scholarly journals Metamorphic proteins: the Janus proteins of structural biology

Open Biology ◽  
2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Kulkarni Madhurima ◽  
Bodhisatwa Nandi ◽  
Ashok Sekhar

The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.

2012 ◽  
Vol 103 (12) ◽  
pp. 2513-2520 ◽  
Author(s):  
Timothy J. Gaborek ◽  
Christophe Chipot ◽  
Jeffry D. Madura

2015 ◽  
Vol 6 (2) ◽  
pp. 1167-1177 ◽  
Author(s):  
Javier Iglesias-Fernández ◽  
Lluís Raich ◽  
Albert Ardèvol ◽  
Carme Rovira

Ab initio conformational free energy landscapes, together with molecular dynamics simulations, enable to predict the catalytic itineraries of β-xylanase enzymes.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Christian Bech Rosen ◽  
Hagan Bayley ◽  
David Rodriguez-Larrea

AbstractProtein post-translational translocation is found at the plasma membrane of prokaryotes and protein import into organellae. Translocon structures are becoming available, however the dynamics of proteins during membrane translocation remain largely obscure. Here we study, at the single-molecule level, the folding landscape of a model protein while forced to translocate a transmembrane pore. We use a DNA tag to drive the protein into the α-hemolysin pore under a quantifiable force produced by an applied electric potential. Using a voltage-quench approach we find that the protein fluctuates between the native state and an intermediate in the translocation process at estimated forces as low as 1.9 pN. The fluctuation kinetics provide the free energy landscape as a function of force. We show that our stable, ≈15 kBT, substrate can be unfolded and translocated with physiological membrane potentials and that selective divalent cation binding may have a profound effect on the translocation kinetics.


2017 ◽  
Author(s):  
A. Dashti ◽  
D. Ben Hail ◽  
G. Mashayekhi ◽  
P. Schwander ◽  
A. des Georges ◽  
...  

AbstractUsing experimental single-particle cryo-EM snapshots of ryanodine receptor (RyR1), a Ca2+-channel involved in skeletal muscle excitation/contraction coupling, we present quantitative free-energy landscapes, reaction coordinates, and three-dimensional movies of the continuous conformational changes associated with the binding of activating ligands. Our results show multiple routes to ligand binding with comparable branching ratios. All high-probability routes involve significant conformational changes before and after the binding of ligands. We also present new insights into the local structural changes along the ligand-binding route, including accommodations at the calcium, ATP, and caffeine binding sites. These observations shed new light on the mechanisms and conformational routes to ligand binding.


Sign in / Sign up

Export Citation Format

Share Document