scholarly journals On the atomic fields of helium and neon

The methods of determining molecular fields, described in previous papers, are here applied with certain modifications to the cases of helium and neon. There is considerable observational material available in the case of helium, both as regards its isotherms and as regards its viscosity over a large range of temperature, but it has not as yet been used with any success to yield satisfactory information about its outer field. Keesom, who obtained a number of theoretical formulæ for the second virial coefficient of the equation of state, was unable to find any which would satisfactorily explain the temperature variation of this coefficient in the case of helium, as determined experimentally by Kamerlingh Onnes; in fact, the experimental coefficient showed at the higher temperatures a distinct maximum, and this property none of his theoretical formulæ possessed. The maximum property has, moreover, been confirmed by the later experimental work of Holborn and Otto. The formula, given in a recent paper, is, however, more successful in this direction, and the method of using it, there described, leads to the conclusion that the field of helium can well be represented by the superposition of repulsive and attractive fields, each according to an inverse power law. Furthermore, the values of the force constants are here determined. It has long been recognised that the temperature variation of the viscosity of helium cannot adequately be represented by the theoretical Sutherland formula, with the obvious inference that helium cannot be regarded (even roughly) as a rigid sphere with a superimposed attractive field. This is perhaps not surprising in view of the comparatively simple electronic structure of helium. Kamerlingh Onnes has shown that the variation can best be represented by the simple law, in which the viscosity varies as a power of the temperature. This formula, although first given as an empirical result, corresponds theoretically to a molecular model, in which the molecules are regarded as point centres of force repelling according to an inverse power law. The information available concerning the viscosity of helium is here used, for the first time, to determine the actual value of the repulsive force constant. It is further shown that the result is consistent with that found by the other (entirely independent) method, above described. The field thus determined is one of repulsion according to an inverse 14th power of the distance and a very weak attraction according to an inverse 5th power.

The investigation of a preceding paper has shown that the temperature variation of viscosity, as determined experimentally, can be satisfactorily explained in many gases on the assumption that the repulsive and attractive parts of the molecular field are each according to an inverse power of the distance. In some cases, in argon, for example, it was further shown that the experimental facts can be explained by more than one molecular model, from which we inferred that viscosity results alone are insufficient to determine precisely the nature of molecular fields. The object of the present paper is to ascertain whether a molecular model of the same type will also explain available experimental data concerning the equation of state of a gas, and if so, whether the results so obtained, when taken in conjunction with those obtained from viscosity, will definitely fix the molecular field. Such an investigation is made possible by the elaborate analysis by Kamerlingh Onnes of the observational material. He has expressed the results in the form of an empirical equation of state of the type pv = A + B/ v + C/ v 2 + D/ v 4 + E/ v 6 + F/ v 8 , where the coefficients A ... F, called by him virial coefficients , are determined as functions of the temperature to fit the observations. Now it is possible by various methods to obtain a theoretical expression for B as a function of the temperature and a strict comparison can then be made between theory and experiment. Unfortunately the solution for B, although applicable to any molecular model of spherical symmetry, is purely formal and contains an integral which can be evaluated only in special cases. This has been done up to now for only two simple models, viz., a van der Waals molecule, and a molecule repelling according to an inverse power law (without attraction), but it is shown in this paper that it can also be evaluated in the case of the model, which was successful in explaining viscosity results. As the two other models just mentioned are particular cases of this, the appropriate formulæ for B are easily deduced from the general one given here.


2006 ◽  
Author(s):  
Gerardo Ramirez ◽  
Sonia Perez ◽  
John G. Holden

Optica ◽  
2015 ◽  
Vol 2 (10) ◽  
pp. 877 ◽  
Author(s):  
Amy L. Oldenburg ◽  
Xiao Yu ◽  
Thomas Gilliss ◽  
Oluwafemi Alabi ◽  
Russell M. Taylor ◽  
...  

2013 ◽  
Vol 20 (01) ◽  
pp. 1350002 ◽  
Author(s):  
F. Giraldi ◽  
F. Petruccione

The exact dynamics of a quantum damped harmonic oscillator coupled to a reservoir of boson modes has been formally described in terms of the coupling function, both in weak and strong coupling regime. In this scenario, we provide a further description of the exact dynamics through integral transforms. We focus on a special class of spectral densities, sub-ohmic at low frequencies, and including integrable divergencies referred to as photonic band gaps. The Drude form of the spectral densities is recovered as upper limit. Starting from special distributions of coherent states as external reservoir, the exact time evolution, described through Fox H-functions, shows long time inverse power law decays, departing from the exponential-like relaxations obtained for the Drude model. Different from the weak coupling regime, in the sub-ohmic condition, undamped oscillations plus inverse power law relaxations appear in the long time evolution of the observables position and momentum. Under the same condition, the number of excitations shows trapping of the population of the excited levels and oscillations enveloped in inverse power law relaxations. Similarly to the weak coupling regime, critical configurations give arbitrarily slow relaxations useful for the control of the dynamics. If compared to the value obtained in weak coupling condition, for strong couplings the critical frequency is enhanced by a factor 4.


2019 ◽  
Vol 109 (9) ◽  
pp. 1519-1532 ◽  
Author(s):  
K. F. Andersen ◽  
C. E. Buddenhagen ◽  
P. Rachkara ◽  
R. Gibson ◽  
S. Kalule ◽  
...  

Seed systems are critical for deployment of improved varieties but also can serve as major conduits for the spread of seedborne pathogens. As in many other epidemic systems, epidemic risk in seed systems often depends on the structure of networks of trade, social interactions, and landscape connectivity. In a case study, we evaluated the structure of an informal sweet potato seed system in the Gulu region of northern Uganda for its vulnerability to the spread of emerging epidemics and its utility for disseminating improved varieties. Seed transaction data were collected by surveying vine sellers weekly during the 2014 growing season. We combined data from these observed seed transactions with estimated dispersal risk based on village-to-village proximity to create a multilayer network or “supranetwork.” Both the inverse power law function and negative exponential function, common models for dispersal kernels, were evaluated in a sensitivity analysis/uncertainty quantification across a range of parameters chosen to represent spread based on proximity in the landscape. In a set of simulation experiments, we modeled the introduction of a novel pathogen and evaluated the influence of spread parameters on the selection of villages for surveillance and management. We found that the starting position in the network was critical for epidemic progress and final epidemic outcomes, largely driven by node out-degree. The efficacy of node centrality measures was evaluated for utility in identifying villages in the network to manage and limit disease spread. Node degree often performed as well as other, more complicated centrality measures for the networks where village-to-village spread was modeled by the inverse power law, whereas betweenness centrality was often more effective for negative exponential dispersal. This analysis framework can be applied to provide recommendations for a wide variety of seed systems.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


1988 ◽  
Vol 61 (12) ◽  
pp. 1388-1391 ◽  
Author(s):  
S. H. Perlmutter ◽  
M. D. Levenson ◽  
R. M. Shelby ◽  
M. B. Weissman

Sign in / Sign up

Export Citation Format

Share Document