A simple proof of existence of weak and statistical solutions of Navier–Stokes equations

The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.

1991 ◽  
Vol 01 (04) ◽  
pp. 447-460 ◽  
Author(s):  
MAREK CAPIŃSKI ◽  
NIGEL CUTLAND

We present a method of constructing nonstandard densities of measures living on infinite-dimensional spaces. This gives the existence of statistical solutions of Navier-Stokes equations as standard measures corresponding to the solution of a first order PDE for the nonstandard densities. For linear equations the method gives a simple proof of uniqueness of statistical solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wen-Juan Wang ◽  
Yan Jia

We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solutionuof the Navier-Stokes equations lies in the regular class∇u∈Lp(0,∞;Bq,∞0(ℝ3)),(2α/p)+(3/q)=2α,2<q<∞,0<α<1, then every weak solutionv(x,t)of the perturbed system converges asymptotically tou(x,t)asvt-utL2→0,t→∞.


Author(s):  
David Maltese ◽  
Antonín Novotný

Abstract We investigate the error between any discrete solution of the implicit marker-and-cell (MAC) numerical scheme for compressible Navier–Stokes equations in the low Mach number regime and an exact strong solution of the incompressible Navier–Stokes equations. The main tool is the relative energy method suggested on the continuous level in Feireisl et al. (2012, Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech., 14, 717–730). Our approach highlights the fact that numerical and mathematical analyses are not two separate fields of mathematics. The result is achieved essentially by exploiting in detail the synergy of analytical and numerical methods. We get an unconditional error estimate in terms of explicitly determined positive powers of the space–time discretization parameters and Mach number in the case of well-prepared initial data and in terms of the boundedness of the error if the initial data are ill prepared. The multiplicative constant in the error estimate depends on a suitable norm of the strong solution but it is independent of the numerical solution itself (and of course, on the discretization parameters and the Mach number). This is the first proof that the MAC scheme is unconditionally and uniformly asymptotically stable in the low Mach number regime.


Sign in / Sign up

Export Citation Format

Share Document