scholarly journals Monte Carlo simulation of coherent effects in multiple scattering

Author(s):  
Igor V. Meglinski ◽  
Vladimir L. Kuzmin ◽  
Dmitry Y. Churmakov ◽  
Douglas A. Greenhalgh

Using a combination of the stochastic Monte Carlo technique and the iteration procedure of the solution to the Bethe–Salpeter equation, it has been shown that the simulation of the optical path of a photon packet undergoing an n th scattering event directly corresponds to the n th–order ladder diagram contribution. In this paper, the Monte Carlo technique is generalized for the simulation of the coherent back–scattering and temporal correlation function of optical radiation scattered within the randomly inhomogeneous turbid medium. The results of simulation demonstrate a good agreement with the diffusing wave theory and experimental results.


1991 ◽  
Vol 05 (13) ◽  
pp. 907-914 ◽  
Author(s):  
RICHARD J. CRESWICK ◽  
CYNTHIA J. SISSON

The properties of the spin-1/2 Heisenberg model on 1, 2, and 3-dimensional lattices are calculated using the Decoupled Cell Method of Homma et al., and these results are compared with high temperature and spin-wave expansions, and with other numerical approaches. The DCM has advantages over other Monte Carlo methods currently in wide use in that the transition probability is positive definite, there is no need to introduce an additional imaginary time, or Trotter, dimension, and the acceptance rate for transitions is comparable to that of classical lattice models. We find very good agreement between the DCM and the high temperature expansion in the temperature region where the high temperature expansion is valid, and reasonably good agreement at low temperatures with spin wave theory. The DCM fails for temperatures T < Tc which decreases with the size of the cell.



2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.









1983 ◽  
Vol 54 (9) ◽  
pp. 5385-5393 ◽  
Author(s):  
V. Ramachandran ◽  
P. R. Vaya


Sign in / Sign up

Export Citation Format

Share Document