scholarly journals Efficient quadrature of highly oscillatory integrals using derivatives

Author(s):  
Arieh Iserles ◽  
Syvert P Nørsett

In this paper, we explore quadrature methods for highly oscillatory integrals. Generalizing the method of stationary phase, we expand such integrals into asymptotic series in inverse powers of the frequency. The outcome is two families of methods, one based on a truncation of the asymptotic series and the other extending an approach implicit in the work of Filon (Filon 1928 Proc. R. Soc. Edinb. 49 , 38–47) . Both kinds of methods approximate the integral as a linear combination of function values and derivatives, with coefficients that may depend on frequency. We determine asymptotic properties of these methods, proving, perhaps counterintuitively, that their performance drastically improves as frequency grows. The paper is accompanied by numerical results that demonstrate the potential of this set of ideas.

Author(s):  
Andrew F Celsus ◽  
Alfredo Deaño ◽  
Daan Huybrechs ◽  
Arieh Iserles

Abstract In this paper, we investigate algebraic, differential and asymptotic properties of polynomials $p_n(x)$ that are orthogonal with respect to the complex oscillatory weight $w(x)=\mathrm {e}^{\mathrm {i}\omega x}$ on the interval $[-1,1]$, where $\omega>0$. We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials $p_{2n}(x)$ for all values of $\omega \in \mathbb {R}$, as well as degeneracy of $p_{2n+1}(x)$ at certain values of $\omega $ (called kissing points). We obtain detailed asymptotic information as $\omega \to \infty $, using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large $\omega $ asymptotics obtained before.


2007 ◽  
Vol 18 (4) ◽  
pp. 435-447 ◽  
Author(s):  
SHEEHAN OLVER

This article presents a method for the numerical quadrature of highly oscillatory integrals with stationary points. We begin with the derivation of a new asymptotic expansion, which has the property that the accuracy improves as the frequency of oscillations increases. This asymptotic expansion is closely related to the method of stationary phase, but presented in a way that allows the derivation of an alternate approximation method that has similar asymptotic behaviour, but with significantly greater accuracy. This approximation method does not require moments.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1160 ◽  
Author(s):  
Sakhi Zaman ◽  
Irshad Hussain ◽  
Dhananjay Singh

An adaptive splitting algorithm was implemented for numerical evaluation of Fourier-type highly oscillatory integrals involving stationary point. Accordingly, a modified Levin collocation method was coupled with multi-resolution quadratures in order to tackle the stationary point and irregular oscillations of the integrand caused by ω . Some test problems are included to verify the accuracy of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document