Geometry- and velocity-constrained cohesive zones and mixed-mode fracture/adhesion energy of interfaces with periodic cohesive interactions

Author(s):  
Bin Chen ◽  
Peidong Wu ◽  
Huajian Gao

We show that the mixed-mode fracture/adhesion energy of an interface with periodically varying cohesive interactions generally depends on the size of the cohesive zone near the tip of a crack along the interface: it is equal to the average cohesive energy of the interface, if the cohesive zone size is much larger than the period of cohesive interaction but becomes the peak value of the local cohesive energy when the opposite is true. It is also interesting that the cohesive zone size can be strongly influenced by the geometry and velocity of the crack. As an example of geometry-constrained cohesive zone, we consider peeling of a thin film on substrate and show that the cohesive zone size under 90° peeling scales with the bending stiffness of the film, while that under 0° peeling scales with the tension stiffness of the film. As an example of a velocity-constrained cohesive zone, we consider crack propagation along an interfacial layer of weak molecular bonds joining two elastic media and show that the cohesive zone size can be altered by an order of magnitude over feasible regimes of crack velocity. These results suggest possible strategies to control fracture/adhesion strength of interfaces in both engineering and biological systems.

2015 ◽  
Vol 148 ◽  
pp. 145-179 ◽  
Author(s):  
R. Dimitri ◽  
M. Trullo ◽  
L. De Lorenzis ◽  
G. Zavarise

2009 ◽  
Vol 76 (14) ◽  
pp. 2281-2297 ◽  
Author(s):  
Luciani N. Lens ◽  
Eduardo Bittencourt ◽  
Virgínia M.R. d’Avila

2021 ◽  
Vol 11 (1) ◽  
pp. 456
Author(s):  
Yanglong Zhong ◽  
Liang Gao ◽  
Xiaopei Cai ◽  
Bolun An ◽  
Zhihan Zhang ◽  
...  

The interface crack of a slab track is a fracture of mixed-mode that experiences a complex loading–unloading–reloading process. A reasonable simulation of the interaction between the layers of slab tracks is the key to studying the interface crack. However, the existing models of interface disease of slab track have problems, such as the stress oscillation of the crack tip and self-repairing, which do not simulate the mixed mode of interface cracks accurately. Aiming at these shortcomings, we propose an improved cohesive zone model combined with an unloading/reloading relationship based on the original Park–Paulino–Roesler (PPR) model in this paper. It is shown that the improved model guaranteed the consistency of the cohesive constitutive model and described the mixed-mode fracture better. This conclusion is based on the assessment of work-of-separation and the simulation of the mixed-mode bending test. Through the test of loading, unloading, and reloading, we observed that the improved unloading/reloading relationship effectively eliminated the issue of self-repairing and preserved all essential features. The proposed model provides a tool for the study of interface cracking mechanism of ballastless tracks and theoretical guidance for the monitoring, maintenance, and repair of layer defects, such as interfacial cracks and slab arches.


Sign in / Sign up

Export Citation Format

Share Document