scholarly journals On second-order differential equations with highly oscillatory forcing terms

Author(s):  
Marissa Condon ◽  
Alfredo Deaño ◽  
Arieh Iserles

We present a method to compute efficiently solutions of systems of ordinary differential equations (ODEs) that possess highly oscillatory forcing terms. This approach is based on asymptotic expansions in inverse powers of the oscillatory parameter, and features two fundamental advantages with respect to standard numerical ODE solvers: first, the construction of the numerical solution is more efficient when the system is highly oscillatory, and, second, the cost of the computation is essentially independent of the oscillatory parameter. Numerical examples are provided, featuring the Van der Pol and Duffing oscillators and motivated by problems in electronic engineering.

2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2018 ◽  
Vol 13 (02) ◽  
pp. 2050042
Author(s):  
Fernane Khaireddine

In this paper, we use the variational iteration method (VIM) to construct approximate solutions for the general [Formula: see text]th-order integro-differential equations. We show that his method can be effectively and easily used to solve some classes of linear and nonlinear Volterra integro-differential equations. Finally, some numerical examples with exact solutions are given.


1970 ◽  
Vol 11 (1) ◽  
pp. 115-128 ◽  
Author(s):  
K. D. Sharma

The necessity of accurate numerical approximations to the solutions of differential equations governing physical systems has always been an important problem with scientists and engineers. Hammer and Hollingsworth [11] have used Gaussian quadrature for solving the linear second order differential equations. This method has been further developed by Morrison and Stoller [3], Korganoff [1], Kuntzman [9], Henrici [12] and Day [7, 8]. Quadrature methods based upon Lobatto quadrature formulae have recently been considered by Day [6, 8] and Jain and Sharma [10] and seem to give better results.


Sign in / Sign up

Export Citation Format

Share Document