scholarly journals Nonlinear MHD Rossby wave interactions and persistent geomagnetic field structures

Author(s):  
Breno Raphaldini ◽  
Carlos F. M. Raupp

The geomagnetic field presents several stationary features that are thought to be linked to inhomogeneities at the core–mantle boundary. Particularly important stationary structures of the geomagnetic field are the flux lobes, which appear in pairs in mid- to high mid- to high latitudes. A recently discovered stratified layer at the top of the Earth’s core poses important constraints on the dynamics at this layer and on the interaction of the core dynamics and the base of the mantle. In this article, we introduce the linear and nonlinear theories of magnetic Rossby waves in a thin shell at the top of the Earth’s core. We study the nonlinear interaction of these waves in the presence of prescribed forcings at the base of the mantle of both a thermal and a topographic nature. We show that the combined effects of forcing and nonlinear interaction can lead the wave phases to be locked around a particular geographical longitude, generating a quasi- stationary flow pattern with a significant meridional component. The solutions of the system are shown to be analogous to atmospheric blocking phenomena. Therefore, we argue that persistent and long-lived structures of the geomagnetic field, such as the geomagnetic lobes, might be associated with a blocking at the top of the Earth’s core due to nonlinear stationary waves.

2020 ◽  
Vol 221 (1) ◽  
pp. 378-393 ◽  
Author(s):  
Julien Aubert

SUMMARY The nature of the force balance that governs the geodynamo is debated. Recent theoretical analyses and numerical simulations support a quasigeotrophic (QG), magneto-Archimedes-Coriolis (MAC) balance in Earth’s core, where the Coriolis and pressure forces equilibrate at leading order in amplitude, and where the buoyancy, Lorentz and ageostrophic Coriolis forces equilibrate at the next order. In contrast, earlier theoretical expectations have favoured a magnetostrophic regime where the Lorentz force would reach leading order at the system scale. The dominant driver (buoyant or magnetic) for the general circulation in Earth’s core is equally debated. In this study, these questions are explored in the light of the high-quality geomagnetic data recently acquired by satellites and at magnetic ground observatories. The analysis involves inverse geodynamo modelling, a method that uses multivariate statistics extracted from a numerical geodynamo model to infer the state of Earth’s core from a geomagnetic field model interpretation of the main field and secular variation data. To test the QG-MAC dynamic hypothesis against the data, the framework is extended in order to explicitly prescribe this force balance into the inverse problem solved at the core surface. The resulting inverse solutions achieve a quantitatively adequate fit to the data while ensuring deviations from the QG-MAC balance (which amount to an inertial driving of the flow) lower than each of the leading forces. The general circulation imaged within the core over the past two decades confirms the existence of a planetary-scale, eccentric, axially columnar gyre that comprises an intense, equatorially symmetric jet at high latitudes in the Pacific hemisphere. The dominant driver of this circulation is shown to be of buoyant nature, through a thermal wind balance with a longitudinally hemispheric buoyancy anomaly distribution. Geomagnetic forecasts initiated with the inverted core states are systematically more accurate against the true interannual geomagnetic field evolution when enforcing the QG-MAC constraint. This force balance is therefore consistent with the geomagnetic data at the large scales of Earth’s core that can be imaged by the method.


1958 ◽  
Vol 48 (4) ◽  
pp. 301-314
Author(s):  
B. Gutenberg

Abstract More than 700 seismograms of 39 shocks recorded mainly in southern California at epicentral distances between 105 and 140 degrees are used to investigate records of phases which have penetrated the earth's core. Properties of PKIKP, SKP, SKIKP, PKS, and PKIKS are discussed. Portions of travel-time curves of these phases are revised. Travel times of waves starting and ending at the surface of the core, and wave velocities in the core, are recalculated. Between about 1,500 and 1,200 km. from the earth's center in the transition zone from the liquid outer to the probably solid inner core, waves having lengths of the order of 10 km. travel faster than longer waves. This is probably caused by a rather rapid increase in viscosity toward the earth's center in this transition zone.


2018 ◽  
Vol 62 ◽  
pp. 02018 ◽  
Author(s):  
Gleb Vodinchar

The method for calculating the eigenmodes of free damped oscillations of the geomagnetic field in the Earth’s core using symbolic computations is described.


2021 ◽  
Vol 8 ◽  
Author(s):  
S. A. Campuzano ◽  
F. J. Pavón-Carrasco ◽  
A. De Santis ◽  
A. González-López ◽  
E. Qamili

Geomagnetic jerks are sudden changes in the geomagnetic field secular variation related to changes in outer core flow patterns. Finding geophysical phenomena related to geomagnetic jerks provides a vital contribution to better understand the geomagnetic field behavior. Here, we link the geomagnetic jerks occurrence with one of the most relevant features of the geomagnetic field nowadays, the South Atlantic Anomaly (SAA), which is due to the presence of reversed flux patches (RFPs) at the Core-Mantle Boundary (CMB). Our results show that minima of acceleration of the areal extent of SAA calculated using the CHAOS-7 model (CHAOS-7.2 release) coincide with the occurrence of geomagnetic jerks for the last 2 decades. In addition, a new pulse in the secular acceleration of the radial component of the geomagnetic field has been observed at the CMB, with a maximum in 2016.2 and a minimum in 2017.5. This fact, along with the minimum observed in 2017.8 in the acceleration of the areal extent of SAA, could point to a new geomagnetic jerk. We have also analyzed the acceleration of the areal extent of South American and African RFPs at the CMB related to the presence of the SAA at surface and have registered minima in the same periods when they are observed in the SAA at surface. This reinforces the link found and would indicate that physical processes that produce the RFPs, and in turn the SAA evolution, contribute to the core dynamics at the origin of jerks.


Sign in / Sign up

Export Citation Format

Share Document