areal extent
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 22)

H-INDEX

33
(FIVE YEARS 2)

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 383
Author(s):  
Christian Körner ◽  
Erika Hiltbrunner

The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally.


Lithos ◽  
2021 ◽  
pp. 106304
Author(s):  
John M. Hora ◽  
Anne-Sophie Tabaud ◽  
Vojtěch Janoušek ◽  
Yulia V. Erban Kochergina
Keyword(s):  

2021 ◽  
Author(s):  
Youhua Ran ◽  
Xin Li ◽  
Guodong Cheng ◽  
Jingxin Che ◽  
Juha Aalto ◽  
...  

Abstract. Monitoring of the thermal state of permafrost is important in environmental science and engineering applications. However, such data are generally unavailable mainly due to the lack of ground observations and the uncertainty of traditional physical models. This study produces novel permafrost datasets for the Northern Hemisphere (NH), including predictions of the mean annual ground temperature (MAGT) at the zero annual amplitude depth and active layer thickness (ALT) with a 1-km resolution for the period of 2000–2016, as well as estimates of the probability of permafrost occurrence and permafrost zonation based on hydrothermal conditions. These datasets integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy. Thus, these data are more accurate than those of previous circumpolar maps (bias = 0.02 ± 0.16 °C, RMSE = 1.32 ± 0.13 °C for MAGT; bias = 2.71 ± 16.46 cm, RMSE = 86.93 ± 19.61 cm for ALT). The datasets suggest that the areal extent of permafrost (MAGT ≤ 0 °C) in the NH, excluding glaciers and lakes, is approximately 15.03 (13.84–19.29) × 106 km2, and the areal extent of permafrost regions (permafrost probability > 0) is approximately 20.14 × 106 km2. The areal fractions of humid, semiarid/subhumid, and arid permafrost regions are 51.84 %, 44.83 %, and 3.33 %, respectively. The areal fractions of cold (≤ −3.0 °C), cool (−3.0 °C to −1.5 °C), and warm (> −1.5 °C) permafrost regions are 37.93 %, 14.35 %, and 47.72 %, respectively. These new datasets based on the most comprehensive field data to date contribute to an updated understanding of the thermal state and zonation of permafrost in the NH. They are potentially useful for various fields, such as in climatology, hydrology, ecology, agriculture, public health, and engineering planning. As a baseline, these datasets are also of great importance for evaluating future changes in MAGT, ALT, permafrost extent, and other spatial features of permafrost in the NH. All of the datasets are published through the National Tibetan Plateau Data Center (TPDC), and the link is https://data.tpdc.ac.cn/en/data/5093d9ff-a5fc-4f10-a53f-c01e7b781368 or https://doi.org/10.11888/Geocry.tpdc.271190 (Ran et al., 2021b).


Author(s):  
А.Ю. Воробьев

По результатам геоинформационного моделирования контуров весеннего затопления поймы реки Оки в ее Рязанском расширении в 2018 году на участке 742–662 км от устья была определена общая площадь покрытой водой территории в пределах днища окской долины. Был также произведен расчет меры затопляемости каждого из локальных морфологических комплексов форм рельефа, выделенных нами для Рязанского расширения ранее. С помощью моделирования, основанного на анализе спутниковых снимков и собственных полевых данных, выявлено наиболее полное заметание гребнем половодной волны сегментно-гривистой поймы современного пояса меандрирования по сравнению с локальными морфологическими комплексами прочих типов. The geographic information analysis of the flood inundation area of the Oka floodplain in the Ryazan region (742–662 km away from the estuary), which was performed in 2018, enabled the author of the article to assess the extent of inundated area within the Oka valley. The author investigated the areal extent of inundation of all the morphological complexes of the Oka. GIS-based modelling showed that the segmental-ridge floodplain meander belt was inundated to a greater extent than other local morphological complexes.


2021 ◽  
Vol 8 ◽  
Author(s):  
S. A. Campuzano ◽  
F. J. Pavón-Carrasco ◽  
A. De Santis ◽  
A. González-López ◽  
E. Qamili

Geomagnetic jerks are sudden changes in the geomagnetic field secular variation related to changes in outer core flow patterns. Finding geophysical phenomena related to geomagnetic jerks provides a vital contribution to better understand the geomagnetic field behavior. Here, we link the geomagnetic jerks occurrence with one of the most relevant features of the geomagnetic field nowadays, the South Atlantic Anomaly (SAA), which is due to the presence of reversed flux patches (RFPs) at the Core-Mantle Boundary (CMB). Our results show that minima of acceleration of the areal extent of SAA calculated using the CHAOS-7 model (CHAOS-7.2 release) coincide with the occurrence of geomagnetic jerks for the last 2 decades. In addition, a new pulse in the secular acceleration of the radial component of the geomagnetic field has been observed at the CMB, with a maximum in 2016.2 and a minimum in 2017.5. This fact, along with the minimum observed in 2017.8 in the acceleration of the areal extent of SAA, could point to a new geomagnetic jerk. We have also analyzed the acceleration of the areal extent of South American and African RFPs at the CMB related to the presence of the SAA at surface and have registered minima in the same periods when they are observed in the SAA at surface. This reinforces the link found and would indicate that physical processes that produce the RFPs, and in turn the SAA evolution, contribute to the core dynamics at the origin of jerks.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
D. G. Barber ◽  
M. L. Harasyn ◽  
D. G. Babb ◽  
D. Capelle ◽  
G. McCullough ◽  
...  

During a research expedition in Hudson Bay in June 2018, vast areas of thick (>10 m), deformed sediment-laden sea ice were encountered unexpectedly in southern Hudson Bay and presented difficult navigation conditions for the Canadian Coast Guard Ship Amundsen. An aerial survey of one of these floes revealed a maximum ridge height of 4.6 m and an average freeboard of 2.2 m, which corresponds to an estimated total thickness of 18 m, far greater than expected within a seasonal ice cover. Samples of the upper portion of the ice floe revealed that it was isothermal and fresh in areas with sediment present on the surface. Fine-grained sediment and larger rocks were visible on the ice surface, while a pronounced sediment band was observed in an ice core. Initial speculation was that this ice had formed in the highly dynamic Nelson River estuary from freshwater, but δ18O isotopic analysis revealed a marine origin. In southern Hudson Bay, significant tidal forcing promotes both sediment resuspension and new ice formation within a flaw lead, which we speculate promotes the formation of this sediment-laden sea ice. Historic satellite imagery shows that sediment-laden sea ice is typical of southern Hudson Bay, varying in areal extent from 47 to 118 km2 during June. Based on an average sediment particle concentration of 0.1 mg mL–1 in sea ice, an areal extent of 51,924 km2 in June 2018, and an estimated regional end-of-winter ice thickness of 1.5 m, we conservatively estimated that a total sediment load of 7.8 × 106 t, or 150 t km–2, was entrained within sea ice in southern Hudson Bay during winter 2018. As sediments can alter carbon concentrations and light transmission within sea ice, these first observations of this ice type in Hudson Bay imply biogeochemical impacts for the marine system.


Sign in / Sign up

Export Citation Format

Share Document