First steps in biological nitrogen fixation

1969 ◽  
Vol 172 (1029) ◽  
pp. 319-325 ◽  

Since abstracts of the papers in this discussion have been circulated, I assume that it is unnecessary to explain that the title does not refer to the biochemical steps that result in the fixation of atmospheric nitrogen, but to the well-known saying that ‘a child must learn to walk before it runs’. As an introduction to the summaries of present day research, it seems worth-while to furnish a perspective of some of the events that led to the modern studies that have been made possible by the development of cell-free systems capable of fixing N 2 . This contribution will be limited primarily to those steps that are most closely related to the subject matter of the biochemical papers on the programme. This choice is dictated, not only because of the limits of time but also because these papers represent the area of my own research interests and, presumably, then, the area of my greatest competency. Alone, perhaps this would not be enough, but if the personal participation that furnishes background dealing with items of human interest and errors—observations that never get into the published works—is added, it should suffice. Other aspects in the field are represented in the discussion by the contributors of the afternoon portion of the programme; but having heard three of these recently, I am confident that these papers, too, will have a biochemical component.

2020 ◽  
Vol 12 (3) ◽  
pp. 165
Author(s):  
Paloma Helena da Silva Libório ◽  
Ivana Marino Bárbaro-Torneli ◽  
Fabio Olivieri de Nobile ◽  
Fabiana Mota da Silva ◽  
Sandra Helena Unêda-Trevisoli

Co-inoculation in soybean is the mixed inoculation with bacterias of the genus Bradyrhizobium and Azospirillum brasilense. The applicability of this practice has become the subject of recent research that aims to overcome the main limitations of biological nitrogen fixation, obtained by traditional soybean inoculation with only Bradyrhizobium. This study investigated the interaction effects among cultivars, bacterium types, with and without micronutrients applied to the seeds on the initial developmental stages of soybean cultivars using multivariate analyses. The seedlings were cultivated in pots filled with soil in greenhouse conditions. The experiment was installed in the Alta Mogiana branch of the Paulista Agribusiness Technology Agency (APTA) in Colina, SP. The 32 treatments were arranged as 4 × 4 × 2 factorial with four soybean cultivars, four bacterium types, with and without micronutrients applied to the seeds. The evaluations were performed at 5, 8 and 32 days after sowing (DAS). The parameters analyzed in the pots showed that the cultivars behaved differently depending on the type of bacteria used. The co-inoculation promoted better nodulation and initial seedling growth in some cultivars. In general, cultivars without application of micronutrients were superior in terms of the parameters analyzed.


2000 ◽  
Vol 8 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Edward C. Cocking

Plants cannot themselves obtain their nitrogen from the air but rely mainly on the supply of combined nitrogen in the form of ammonia, or nitrates, resulting from nitrogen fixation by free-living bacteria in the soil or bacteria living symbiotically in nodules on the roots of legumes. Increased crop yields in the twentieth century required this biological nitrogen fixation to be supplemented increasingly by the use of fixed nitrogen from chemical fertilizers. The development of the Haber–Bosch process for catalytically combining atmospheric nitrogen with hydrogen from fossil fuels to produce ammonia enabled increased crop yields. However, energy and environmental concerns arising from the overuse of nitrogenous fertilizers have highlighted the need for plants to obtain more of their nitrogen from the air by biological nitrogen fixation. New systems are being developed for increased biological nitrogen fixation with cereals and other non-legumes by establishing nitrogen-fixing bacteria within their roots. This new inoculation technology is aimed at significantly reducing the use of synthetic nitrogenous fertilizers in world agriculture.


2019 ◽  
Author(s):  
◽  
Nhung Thi Huyen Hoang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Nitrogen is a macronutrient that is critical for plant growth and development because it provides the building blocks of nucleic acids, proteins, chlorophyll, and energy- transfer compounds, such as ATP. Although 78% of the atmosphere is diatomic nitrogen, this form is inert and unavailable to plants due to the strong nitrogen-nitrogen triple bond. Plants can only absorb nitrogen in the forms of NH4+ or NO3-. Most of the inorganic nitrogen available to crop plants is provided through fertilizers synthesized based on the Haber-Bosch process. This process converts atmospheric nitrogen (N2) into ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst (iron) under high temperatures (~500 [degrees]C) and high pressures (150-300 bar). Ammonia production by this method consumes a lot of energy, which is derived from burning fossil fuels. Synthetic ammonia production by the Haber-Bosch process causes losses of biodiversity through eutrophication, soil acidification and global increase in N2O atmospheric concentration, which is the third most significant greenhouse gas. An alternative approach to provide a sustainable nitrogen source to plants without causing such damage to the environment is through biological nitrogen fixation between legume species and Rhizobium bacteria. The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, specialized organs within which rhizobia convert atmospheric nitrogen into ammonia for plant consumption. In return, the legume host plants provide rhizobia with photosynthate as a carbon source for their growth. The legume - Rhizobium symbiosis is a sophisticated process that requires numerous regulators including the 20-24 nucleotide-long microRNAs which negatively regulate the expression of their target messenger RNAs. In my study, we provide two examples that demonstrate the significant role of microRNAs in the symbiotic interplay between soybean, an important legume crop, and rhizobia. In the first example, our results suggest that gma-miR319i functions as a positive regulator of nodule number during the soybean - Bradyrhizobium symbiosis by targeting the TCP33 transcription factor. Overexpression and CRISPR/cas9-mediated gene mutation of gma-miR319i increased and reduced nodule number after rhizobial inoculation, respectively. gma-miR319i and TCP33 showed an inverse expression pattern in different stages of nodule development. TCP33 modulated nodule development in a gma-miR319i dependent manner. The expression of gma-miR319i and TCP33 was differentially regulated in one soybean mutant line that exhibits a hypernodulation phenotype. In the second example, we further investigated the mechanism by which two identical microRNAs, gma-miR171o and gma-miR171q, function in modulating the spatial and temporal aspects of soybean nodulation. Although sharing the identical mature sequence, gma-miR171o and gma-miR171q genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Besides those two above-mentioned examples, we were able to generate and characterize an enhancer trap insertional mutant of the NODULATION SIGNALING PATHWAY 2 (NSP2) gene which is the target gene of Gma-miR171 and also an important regulator of nodulation. Overall, our study shows the importance of microRNAs in the regulation of nitrogen-fixing symbiosis. Our results contribute to efforts to fully understand the molecular mechanisms controlling the legume - Rhizobium interaction. Our ultimate hope is that the information gained through my studies can lead to an increased utilization of biological nitrogen fixation for sustainable agriculture and environment protection.


1986 ◽  
Vol 15 (3) ◽  
pp. 128-134 ◽  
Author(s):  
C. A. Atkins

Although the recent fall in the price of oil will ultimately be reflected in some reduction in the price of nitrogenous fertilizers the cost of the latter will still be sufficient to maintain interest in techniques of biological nitrogen fixation. This is attractive, in the sense that it involves direct utilization of atmospheric nitrogen as a free good but there are some costs, not yet possible to evaluate, to be set on the debit side. There is, therefore, need for much more research.


1988 ◽  
Vol 21 (3) ◽  
pp. 299-329 ◽  
Author(s):  
Robert C. Bray

Molybednum-containing enzymes (Coughlan, 1980; Spiro, 1985) occupy a significant place in the development of the field now termed inorganic biochemistry. The importance of the metal as a biological trace element depends on its involvement in the known, and perhaps other as yet unknown, molybdoenzymes. That it plays a role in biological nitrogen fixation, the process whereby the enzyme nitrogenase in the root nodules of plants converts atmospheric nitrogen into ammonia, was recognized in the 1930s. The metal is also a constituent of a variety of other enzymes, having first been found in a mammalian enzyme, xanthine oxidase, in the 1950s.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Qin Li ◽  
Haowei Zhang ◽  
Liqun Zhang ◽  
Sanfeng Chen

Abstract Background Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. Conclusions The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively.


Sign in / Sign up

Export Citation Format

Share Document