The genetic analysis of puffing in polytene chromosomes of Drosophila

1970 ◽  
Vol 176 (1044) ◽  
pp. 319-327 ◽  

The characteristics of several mutants of Drosophila melanogaster and Drosophila simulans lacking particular salivary gland chromosome puffs are described. On the basis of their observed behaviour in heterozygotes these puff mutants can be classified into puff structural gene and puff regulating gene mutants. Other types of mutation affecting the larval and prepupal puffing cycle include lethals, mutants controlling puff size, and chromosome aberrations which divide a puff into two separate puffs.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 229-244
Author(s):  
Martina Vaskova ◽  
A M Bentley ◽  
Samantha Marshall ◽  
Pamela Reid ◽  
Carl S Thummel ◽  
...  

Abstract The 63F early puff in the larval salivary gland polytene chromosomes contains the divergently transcribed E63-1 and E63-2 ecdysone-inducible genes. E63-1 encodes a member of the EF-hand family of Ca2+-binding proteins, while E63-2 has no apparent open reading frame. To understand the functions of the E63 genes, we have determined the temporal and spatial patterns of E63-1 protein expression, as well as undertaken a genetic analysis of the 63F puff. We show that E63-1 is expressed in many embryonic and larval tissues, but the third-instar larval salivary gland is the only tissue where increases in protein levels correlate with increases in ecdysone titer. Furthermore, the subcellular distribution of E63-1 protein changes dynamically in the salivary glands at the onset of metamorphosis. E63-1 and E63-2 null mutations, however, have no effect on development or fertility. We have characterized 40 kb of the 63F region, defined as the interval between Ubi-p and E63-2, and have identified three lethal complementation groups that correspond to the dSc-2, ida, and mge genes. We show that mge mutations lead to first-instar larval lethality and that Mge protein is similar to the Tom22 mitochondrial import proteins of fungi, suggesting that it has a role in mitochondrial function.


1988 ◽  
Vol 8 (5) ◽  
pp. 1877-1886
Author(s):  
B M Benton ◽  
S Berrios ◽  
P A Fisher

A 75-kilodalton polypeptide has been identified which copurifies with karyoskeletal protein-enriched fractions prepared from Drosophila melanogaster embryos. Results of indirect immunofluorescence experiments suggest that this protein, here designated p75, is primarily associated with puffed regions of larval salivary gland polytene chromosomes. In nonpolytenized Schneider 2 tissue culture cells, p75 appeared to be localized throughout the nuclear interior during interphase. In mitotic cells, p75 was redistributed diffusely. A possible role for karyoskeletal elements in transcriptional regulation is discussed.


Genetics ◽  
1988 ◽  
Vol 120 (3) ◽  
pp. 755-766
Author(s):  
M B Davis ◽  
R J MacIntyre

Abstract The gene for alpha-glycerophosphate oxidase, the nuclear encoded mitochondrial enzyme of the alpha-glycerophosphate cycle (alpha GP); has been mapped in Drosophila melanogaster. Several interstitial deficiencies in region 50c-53AB of chromosome 2R were used to localize the structural gene to 52D2-5. In addition, mutations of alpha GPO were generated; alpha GPO mutants are viable yet flightless. Interactions of alpha GPO with alpha-glycerophosphate dehydrogenase (alpha GPDH), the cytoplasmic enzyme of the alpha GP cycle, were investigated through the synthesis of a series of alpha GPDHnull-alpha GPOnull double mutants. Of the six double null mutants constructed, four alpha GPDH-alpha GPO double nulls are viable and flightless. Two double mutants, however, exhibit an allelic-dependent synthetic lethal phenotype.


Genetica ◽  
2004 ◽  
Vol 120 (1-3) ◽  
pp. 137-150 ◽  
Author(s):  
Sylvie Aulard ◽  
Laurence Monti ◽  
Nicole Chaminade ◽  
Françoise Lemeunier

1946 ◽  
Vol 62 (2) ◽  
pp. 114-119 ◽  
Author(s):  
B. M. Slizynski

The problem to be presented here emerges from the following groups of facts and more or less generally accepted opinions.As heterochromatin we may define those parts of chromosomes which reach maximum nucleic acid charge in mitosis or meiosis in times other than metaphase. In salivary gland chromosomes (which are more conveniently called polytene chromosomes) of Drosophila melanogaster the proximal heterochromatic parts of all chromosomes come together and form a central undifferentiated mass, the chromocentre. Genetically heterochromatin forms the so-called inert regions of the chromosomes.


Sign in / Sign up

Export Citation Format

Share Document