synthetic lethal
Recently Published Documents


TOTAL DOCUMENTS

947
(FIVE YEARS 304)

H-INDEX

70
(FIVE YEARS 12)

2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Grace S. Shieh

Two genes are said to have synthetic lethal (SL) interactions if the simultaneous mutations in a cell lead to lethality, but each individual mutation does not. Targeting SL partners of mutated cancer genes can kill cancer cells but leave normal cells intact. The applicability of translating this concept into clinics has been demonstrated by three drugs that have been approved by the FDA to target PARP for tumors bearing mutations in BRCA1/2. This article reviews applications of the SL concept to translational cancer medicine over the past five years. Topics are (1) exploiting the SL concept for drug combinations to circumvent tumor resistance, (2) using synthetic lethality to identify prognostic and predictive biomarkers, (3) applying SL interactions to stratify patients for targeted and immunotherapy, and (4) discussions on challenges and future directions.


2022 ◽  
Vol 23 (1) ◽  
pp. 523
Author(s):  
Sayaka Ueno ◽  
Tamotsu Sudo ◽  
Akira Hirasawa

Ataxia–telangiectasia mutated (ATM) functions as a key initiator and coordinator of DNA damage and cellular stress responses. ATM signaling pathways contain many downstream targets that regulate multiple important cellular processes, including DNA damage repair, apoptosis, cell cycle arrest, oxidative sensing, and proliferation. Over the past few decades, associations between germline ATM pathogenic variants and cancer risk have been reported, particularly for breast and pancreatic cancers. In addition, given that ATM plays a critical role in repairing double-strand breaks, inhibiting other DNA repair pathways could be a synthetic lethal approach. Based on this rationale, several DNA damage response inhibitors are currently being tested in ATM-deficient cancers. In this review, we discuss the current knowledge related to the structure of the ATM gene, function of ATM kinase, clinical significance of ATM germline pathogenic variants in patients with hereditary cancers, and ongoing efforts to target ATM for the benefit of cancer patients.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiran Chen ◽  
Li Li ◽  
Jie Lan ◽  
Yang Cui ◽  
Xiaosong Rao ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. Methods CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. Results The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. Conclusions These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


2022 ◽  
Author(s):  
Julie A Shields ◽  
Samuel R Meier ◽  
Madhavi Bandi ◽  
Maria Dam Ferdinez ◽  
Justin L Engel ◽  
...  

Synthetic lethality - a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone - can be co-opted for cancer therapeutics. A pair of paralog genes is among the most straightforward synthetic lethal interaction by virtue of their redundant functions. Here we demonstrate a paralog-based synthetic lethality by targeting Vaccinia-Related Kinase 1 (VRK1) in Vaccinia-Related Kinase 2 (VRK2)-methylated glioblastoma (GBM). VRK2 is silenced by promoter methylation in approximately two-thirds of GBM, an aggressive cancer with few available targeted therapies. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells results in decreased activity of the downstream substrate Barrier to Autointegration Factor (BAF), a regulator of post-mitotic nuclear envelope formation. VRK1 knockdown, and thus reduced BAF activity, causes nuclear lobulation, blebbing and micronucleation, which subsequently results in G2/M arrest and DNA damage. The VRK1-VRK2 synthetic lethal interaction is dependent on VRK1 kinase activity and is rescued by ectopic VRK2 expression. Knockdown of VRK1 leads to robust tumor growth inhibition in VRK2-methylated GBM xenografts. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM.


2021 ◽  
Author(s):  
Jonathan So ◽  
Nathaniel Mabe ◽  
Bernhard Englinger ◽  
Maria Trissal ◽  
Daeun Jeong ◽  
...  

Collateral lethality occurs when loss of one paralog renders cancer cells dependent on the remaining paralog. Combining genome scale CRISPR/Cas9 screens coupled with RNA-sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase Vaccinia-Related Kinase 1 (VRK1) for their survival. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout (KO) sensitized cells to VRK1 suppression, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 suppression. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas, and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced Barrier-to-Autointegration Factor (BAF) phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.


2021 ◽  
Author(s):  
Jie Wang ◽  
Min Wu ◽  
Xuhui Huang ◽  
Li Wang ◽  
Sophia Zhang ◽  
...  

Two genes are synthetic lethal if mutations in both genes result in impaired cell viability, while mutation of either gene does not affect the cell survival. The potential usage of synthetic lethality (SL) in anticancer therapeutics has attracted many researchers to identify synthetic lethal gene pairs. To include newly identified SLs and more related knowledge, we present a new version of the SynLethDB database to facilitate the discovery of clinically relevant SLs. We extended the first version of SynLethDB database significantly by including new SLs identified through CRISPR screening, a knowledge graph about human SLs, and new web interface, etc. Over 16,000 new SLs and 26 types of other relationships have been added, encompassing relationships among 14,100 genes, 53 cancers, and 1,898 drugs, etc. Moreover, a brand-new web interface has been developed to include modules such as SL query by disease or compound, SL partner gene set enrichment analysis and knowledge graph browsing through a dynamic graph viewer. The data can be downloaded directly from the website or through the RESTful APIs. The database is accessible online at http://synlethdb.sist.shanghaitech.edu.cn/v2.


2021 ◽  
Author(s):  
Ziva Pogacar ◽  
Kelvin Groot ◽  
Fleur Jochems ◽  
Matheus Dos Santos Dias ◽  
Ben Morris ◽  
...  

Discovering biomarkers of drug response and finding powerful drug combinations can support the reuse of previously abandoned cancer drugs in the clinic. Indisulam is an abandoned drug that acts as a molecular glue, inducing degradation of splicing factor RBM39 through interaction with CRL4DCAF15. Here, we performed genetic and compound screens to uncover factors mediating indisulam sensitivity and resistance. First, a dropout CRISPR screen identified SRPK1 loss as a synthetic lethal interaction with indisulam that can be exploited therapeutically by the SRPK1 inhibitor SPHINX31. Moreover, a CRISPR resistance screen identified components of the degradation complex that mediate resistance to indisulam: DCAF15, DDA1, and CAND1. Lastly, we show that cancer cells readily acquire spontaneous resistance to indisulam. Upon acquiring indisulam resistance, pancreatic cancer (Panc10.05) cells still degrade RBM39 and are vulnerable to BCL-xL inhibition. The better understanding of the factors that influence the response to indisulam can assist rational reuse of this drug in the clinic.


2021 ◽  
Author(s):  
Yuanli Wang ◽  
Megan Stevens ◽  
Torrey R Mandigo ◽  
Stephanie J Bouley ◽  
Aditi Sharma ◽  
...  

Neurofibromatosis type 1 (NF1) is a genetic multi-system disorder. Symptoms include near universal benign neurofibromas, as well as malignant tumours, including generally fatal malignant peripheral nerve sheath tumours. There are limited therapies for any NF1-associated tumours; therefore, there is a clear clinical need to discover new drugs that specifically target NF1-deficient tumour cells. Using a Drosophila NF1-KO cell model, we used synthetic lethal screening to identify candidate drug targets for NF1-deficient tumours and performed statistical enrichment analysis to identify further targets. We then assessed the top 72 candidate synthetic lethal partner genes to NF1 using Variable Dose Analysis, resulting in 15 candidate genes that decreased NF1-KO viability by >10% and were novel druggable targets for NF1. Autophagy inhibitors Chloroquine (CQ) and Bafilomycin A1 resulted in a significant reduction in NF1-KO cell viability, which was conserved in a panel of human NF1 mutant cell lines. AZT and Enzalutamide also selectively reduced NF1 mutant cell viability in human cell lines. Furthermore, the effect of CQ was conserved in a Drosophila NF1-mutant in vivo model. This study highlights two key points: 1) The use of Drosophila cells as a model to screen for drugs specifically targeting NF1 mutant cells was highly successful as candidate interactions were conserved across a panel of human NF1 mutant cells and an in vivo fly NF1 mutant model, and 2) NF1-deficient cells have vulnerability to disruption of the autophagy pathway, telomerase activity, and AR activity. These pathways/drugs represent promising targets for the potential treatment of NF1-associated tumours.


2021 ◽  
Author(s):  
Chunxuan Shao

Background: Mutation specific synthetic lethal partners (SLPs) offer significant insights in identifying novel targets and designing personalized treatments in cancer studies. Large scale genetic screens in cell lines and model organisms provide crucial resources for mining SLPs, yet those experiments are expensive and might be difficult to set up. Various computational methods have been proposed to predict the potential SLPs from different perspectives. However, those efforts are hampered by the low signal-to-noise ratio in simple correlation based approaches, or incomplete reliable training sets in supervised approaches. Results: Here we present mslp, a comprehensive pipeline to identify potential SLPs via integrating genomic and transcriptomic datasets from both patient tumours and cancer cell lines. Leveraging cutting-edges algorithms, we identify a broad spectrum of primary SLPs for mutations presented in patient tumours. Further, for mutations detected in cell lines, we develop the idea of consensus SLPs which are also identified as screen hits, and show consistency impact on cell viability. Applied in real datasets, we successfully identified known synthetic lethal gene pairs. Remarkably, genetic screen results suggested that consensus SLPs have a significant impact on cell viability compared to common hits. Conclusions: Mslp is a powerful and flexible pipeline to identify potential SLPs in a cancer context-specific manner, which might aid in drug developments and precise medicines in cancer treatments. The pipeline is implemented in R and freely available in github.


2021 ◽  
Vol 22 (24) ◽  
pp. 13324
Author(s):  
Watson P. Folk ◽  
Alpana Kumari ◽  
Tetsushi Iwasaki ◽  
Erica K. Cassimere ◽  
Slovénie Pyndiah ◽  
...  

The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by BIN1 deficits. Forced BIN1 depletion compromised cisplatin sensitivity irrespective of Ser15-phosphorylated, pro-apoptotic TP53 tumor suppressor. The BIN1 deficit facilitated ATM to phosphorylate the DNA-damage-response (DDR) effectors, including MDC1. Consequently, another DDR protein, RNF8, bound to ATM-phosphorylated MDC1 and protected MDC1 from caspase-3-dependent proteolytic cleavage to hinder cisplatin sensitivity. Of note, long-term and repeated exposure to cisplatin naturally recapitulated the BIN1 loss and accompanying RNF8-dependent cisplatin resistance. Simultaneously, endogenous MYC was remarkably activated by PARP1, thereby repressing the BIN1 promoter, whereas PARP inhibition abolished the hyperactivated MYC-dependent BIN1 suppression and restored cisplatin sensitivity. Since the BIN1 gene rarely mutates in human cancers, our results suggest that simultaneous inhibition of PARP1 and ATM provokes a new BRCAness-independent synthetic lethal effect and ultimately re-establishes cisplatin sensitivity even in platinum-refractory cancer cells.


Sign in / Sign up

Export Citation Format

Share Document