scholarly journals Nonlinear trade-offs allow the cooperation game to evolve from Prisoner's Dilemma to Snowdrift

2017 ◽  
Vol 284 (1854) ◽  
pp. 20170228 ◽  
Author(s):  
Lin Chao ◽  
Santiago F. Elena

The existence of cooperation, or the production of public goods, is an evolutionary problem. Cooperation is not favoured because the Prisoner's Dilemma (PD) game drives cooperators to extinction. We have re-analysed this problem by using RNA viruses to motivate a model for the evolution of cooperation. Gene products are the public goods and group size is the number of virions co-infecting the same host cell. Our results show that if the trade-off between replication and production of gene products is linear, PD is observed. However, if the trade-off is nonlinear, the viruses evolve into separate lineages of ultra-defectors and ultra-cooperators as group size is increased. The nonlinearity was justified by the existence of real viral ultra-defectors, known as defective interfering particles, which gain a nonlinear advantage by being smaller. The evolution of ultra-defectors and ultra-cooperators creates the Snowdrift game, which promotes high-level production of public goods.

2016 ◽  
Author(s):  
Lin Chao ◽  
Santiago F. Elena

The existence of cooperation, or the production of public goods, is an evolutionary problem. Cooperation is not favored because the Prisoner’s Dilemma (PD) game drives cooperators to extinction. We have re-analyzed this problem by using RNA viruses to motivate a model for the evolution of cooperation. Gene products are the public goods and group size is the number of virions co-infecting the same host cell. Our results show that if the tradeoff between replication and production of gene products is linear, PD is observed. However, if the tradeoff is nonlinear, the viruses evolve into separate lineages of ultra-defectors and ultra-cooperators as group size is increased. The nonlinearity was justified by the existence of real viral ultra-defectors, known as defective interfering (DI) particles, which gain a nonlinear advantage by being smaller. The evolution of ultra-defectors and ultra-cooperators creates the Snow Drift game, which promotes high-level production of public goods.


2021 ◽  
Vol 1 ◽  
Author(s):  
Connor Spencer ◽  
Elizabeth Tripp ◽  
Feng Fu ◽  
Scott Pauls

The mammalian suprachiasmatic nucleus (SCN) comprises about 20,000 interconnected oscillatory neurons that create and maintain a robust circadian signal which matches to external light cues. Here, we use an evolutionary game theoretic framework to explore how evolutionary constraints can influence the synchronization of the system under various assumptions on the connection topology, contributing to the understanding of the structure of interneuron connectivity. Our basic model represents the SCN as a network of agents each with two properties—a phase and a flag that determines if it communicates with its neighbors or not. Communication comes at a cost to the agent, but synchronization of phases with its neighbors bears a benefit. Earlier work shows that when we have “all-to-all” connectivity, where every agent potentially communicates with every other agent, there is often a simple trade-off that leads to complete communication and synchronization of the system: the benefit must be greater than twice the cost. This trade-off for all-to-all connectivity gives us a baseline to compare to when looking at other topologies. Using simulations, we compare three plausible topologies to the all-to-all case, finding that convergence to synchronous dynamics occurs in all considered topologies under similar benefit and cost trade-offs. Consequently, sparser, less biologically costly topologies are reasonable evolutionary outcomes for organisms that develop a synchronizable oscillatory network. Our simulations also shed light on constraints imposed by the time scale on which we observe the SCN to arise in mammals. We find two conditions that allow for a synchronizable system to arise in relatively few generations. First, the benefits of connectivity must outweigh the cost of facilitating the connectivity in the network. Second, the game at the core of the model needs to be more cooperative than antagonistic games such as the Prisoner’s Dilemma. These results again imply that evolutionary pressure may have driven the system towards sparser topologies, as they are less costly to create and maintain. Last, our simulations indicate that models based on the mutualism game fare the best in uptake of communication and synchronization compared to more antagonistic games such as the Prisoner’s Dilemma.


Author(s):  
Shun Kurokawa

The existence of cooperation demands explanation in terms of natural selection. Prisoner’s dilemma is a framework often used when studying the evolution of cooperation. In prisoner’s dilemma, most previous studies consider the situation wherein an individual who cooperates will give an opponent an amount b at a personal cost of c, where b > c > 0 while an individual who defects will give nothing. This model setting is convenient; however, previous studies have not considered the case wherein a different player has a different benefit and different cost while in reality, it is natural to consider that a different player has a different benefit and different cost. Here, we raise the following question: Taking that a different individual has a different benefit and a different cost into consideration, what strategy is likely to evolve? In this paper, we focus on the direct reciprocity and analyze the case wherein a different player has a different benefit and a different cost. We obtain the condition for the evolution in the general case. And in addition, we have revealed that under a specific condition as the interaction repeats longer and the benefit-to-cost ratio is larger and the cooperating probability is more sensitive to the benefit the opponent provides, the establishment of cooperation is more likely.


Sign in / Sign up

Export Citation Format

Share Document