Line singularities in wave fields

Author(s):  
J. F. Nye
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Waseem G. Shadid ◽  
Reem Shadid

2004 ◽  
Vol 11 (3) ◽  
pp. 281-293
Author(s):  
V. Goncharov ◽  
V. Pavlov

Abstract. The problem of the null-modes existence and some particularities of their interaction with nonlinear vortex-wave-like structures is discussed. We show that the null-modes are fundamental elements of nonlinear wave fields. The conditions under which null-modes can manifest themselves are elucidated. The Rossby-Hasegawa-Mima (RHM) model is used for the illustration of features of null-modes-waves interactions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Philippe Mathieu ◽  
Nicholas Teh

Abstract Recent years have seen a renewed interest in using ‘edge modes’ to extend the pre-symplectic structure of gauge theory on manifolds with boundaries. Here we further the investigation undertaken in [1] by using the formalism of homotopy pullback and Deligne- Beilinson cohomology to describe an electromagnetic (EM) duality on the boundary of M = B3 × ℝ. Upon breaking a generalized global symmetry, the duality is implemented by a BF-like topological boundary term. We then introduce Wilson line singularities on ∂M and show that these induce the existence of dual edge modes, which we identify as connections over a (−1)-gerbe. We derive the pre-symplectic structure that yields the central charge in [1] and show that the central charge is related to a non-trivial class of the (−1)-gerbe.


1966 ◽  
Vol 10 (3) ◽  
pp. 259-270 ◽  
Author(s):  
Vlastislav Červený
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document