Extreme and Rogue Waves in Directional Wave Fields

2011 ◽  
Vol 4 (1) ◽  
pp. 24-33 ◽  
Author(s):  
A. Toffoli
2004 ◽  
Vol 26 (1-2) ◽  
pp. 13-22 ◽  
Author(s):  
Shaosong Zhang ◽  
Jun Zhang

2000 ◽  
Vol 40 (4) ◽  
pp. 375-391 ◽  
Author(s):  
J.C. Nieto Borge ◽  
C. Guedes Soares
Keyword(s):  
X Band ◽  

Author(s):  
A. Toffoli ◽  
A. V. Babanin ◽  
F. Ardhuin ◽  
M. Benoit ◽  
E. M. Bitner-Gregersen ◽  
...  

Laboratory experiments have been carried out in the directional wave tank at Marintek (Norway) to study the nonlinear dynamics of surface gravity waves and the occurrence of extreme events, when the wave field traverses obliquely an ambient current. A condition of partial opposition has been considered. Tests on regular waves have shown that the current can trigger the formation of large amplitude waves. In random wave fields, however, this only results in a weak deviation from the statistical properties observed in absence of a current.


Author(s):  
Alexander V. Babanin

Abstract Modulational instability of nonlinear waves in dispersive environments is known across a broad range of physical media, from nonlinear optics to waves in plasmas. Since it was discovered for the surface water waves in the early 60s, it was found responsible for, or able to contribute to the topics of breaking and rogue waves, swell, ice breakup, wave-current interactions and perhaps even spray production. Since the early days, however, the argument continues on whether the modulational instability, which is essentially a one-dimensional phenomenon, is active in directional wave fields (that is whether the realistic directional spectra are narrow enough to maintain such nonlinear behaviours). Here we discuss the distinct features of the evolution of nonlinear surface gravity waves, which should be attributed as signatures to this instability in oceanic wind-generated wave fields. These include: wave-breaking threshold in terms of average steepness; upshifting of the spectral energy prior to breaking; oscillations of wave asymmetry and skewness; energy loss from the carrier waves in the course of the breaking. We will also refer to the linear/nonlinear superposition of waves which is often considered a counterpart (or competing) mechanism responsible for breaking or rogue waves in the ocean. We argue that both mechanisms are physically possible and the question of in situ abnormal waves is a problem of their relative significance in specific circumstances.


1984 ◽  
Vol 21 (03) ◽  
pp. 270-276
Author(s):  
Bruce L. Hutchison

A frequency domain technique is presented which permits the determination of the complete covariance matrix for the six degree-of-freedom motions, and the nodal shears and bending moments, for floating bridges and breakwaters. The structures are modeled as a series of interacting modules subject to stochastic excitation from directional short-crested seas. The two principal methods of analyzing such problems— linear superposition of responses to long-crested components of the directional spectrum, and beam sea responses modified by a scalar coherency function—are carefully examined. It is shown that, under proper interpretation, the two methods are logically consistent. The paper concludes by examining two types of coherency processes in directional wave fields.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Bo Han

In this work, a (2 + 1)-dimensional generalized Nizhnik–Novikov–Veselov (GNNV) equation, which can be reduced to several integrable equations, is under investigation. By virtue of Bell’s polynomials, an effective and straightforward way is presented to succinctly construct its two bilinear forms. Furthermore, based on the bilinear formalism and the extended homoclinic test, the breather wave solution, rogue-wave solution and solitary-wave solution of the equation are well constructed. The results can be used to enrich the dynamical behavior of the (2 + 1)-dimensional nonlinear wave fields.


Author(s):  
Mark A. Davidson ◽  
Kenneth S. Kingston ◽  
David A. Huntley

Wave Motion ◽  
2018 ◽  
Vol 83 ◽  
pp. 94-101 ◽  
Author(s):  
Elmira Fadaeiazar ◽  
Alberto Alberello ◽  
Miguel Onorato ◽  
Justin Leontini ◽  
Federico Frascoli ◽  
...  

2011 ◽  
Vol 11 (3) ◽  
pp. 895-903 ◽  
Author(s):  
A. Toffoli ◽  
L. Cavaleri ◽  
A. V. Babanin ◽  
M. Benoit ◽  
E. M. Bitner-Gregersen ◽  
...  

Abstract. Laboratory experiments were performed to study the dynamics of three- dimensional mechanically generated waves propagating over an oblique current in partial opposition. The flow velocity varied along the mean wave direction of propagation with an increasing trend between the wave-maker and the centre of the tank. Tests with regular wave packets traversing the area of positive current gradient showed that the concurrent increase of wave steepness triggered modulational instability on otherwise stable wave trains and hence induced the development of very large amplitude waves. In random directional wave fields, the presence of the oblique current resulted in a weak reinforcement of wave instability with a subsequent increase of the probability of occurrence of extreme events. This seems to partially compensate the suppression of strongly non-Gaussian properties due to directional energy distribution.


Sign in / Sign up

Export Citation Format

Share Document