scholarly journals Controlling light’s helicity at the source: orbital angular momentum states from lasers

Author(s):  
Andrew Forbes

Optical modes that carry orbital angular momentum (OAM) are routinely produced external to the laser cavity and have found a variety of applications, thus increasing the demand for integrated solutions for their production. Yet such modes are notoriously difficult to produce from lasers due to the strict symmetry requirements for their creation, together with the need to break the degeneracy in helicity. Here, we review the progress made since 1992 in producing such twisted light modes directly at the source, from gas to solid-state lasers, bulk to integrated on-chip solutions, through to generic devices for on-demand OAM in both scalar and vector forms. This article is part of the themed issue ‘Optical orbital angular momentum’.

Nanoscale ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 2227-2233 ◽  
Author(s):  
Shengtao Mei ◽  
Kun Huang ◽  
Hong Liu ◽  
Fei Qin ◽  
Muhammad Q. Mehmood ◽  
...  

The orbital angular momentum (OAM) of light can be taken as an independent and orthogonal degree of freedom for multiplexing in an optical communication system, potentially improving the system capacity to hundreds of Tbits per second.


2014 ◽  
Author(s):  
Ryan P. Scott ◽  
Roberto Proietti ◽  
Binbin Guan ◽  
S. J. Yoo

2020 ◽  
Vol 95 (8) ◽  
pp. 085509
Author(s):  
Zhuoyuan Wang ◽  
Shi Yao Chong ◽  
Peihong Cheng ◽  
Peng An ◽  
Jian Qi Shen

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhifeng Zhang ◽  
Haoqi Zhao ◽  
Danilo Gomes Pires ◽  
Xingdu Qiao ◽  
Zihe Gao ◽  
...  

Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.


Author(s):  
Benjamin J. McMorran ◽  
Amit Agrawal ◽  
Peter A. Ercius ◽  
Vincenzo Grillo ◽  
Andrew A. Herzing ◽  
...  

The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45 , 8185 ( doi:10.1103/PhysRevA.45.8185 )) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’.


2016 ◽  
Author(s):  
E. M. Knutson ◽  
Sanjaya Lohani ◽  
Onur Danaci ◽  
Sean D. Huver ◽  
Ryan T. Glasser

Sign in / Sign up

Export Citation Format

Share Document