scholarly journals Super-resolution fluorescence microscopy by line-scanning with an unmodified two-photon microscope

Author(s):  
Christian Pilger ◽  
Jakub Pospíšil ◽  
Marcel Müller ◽  
Martin Ruoff ◽  
Martin Schütte ◽  
...  

Fluorescence-based microscopy as one of the standard tools in biomedical research benefits more and more from super-resolution methods, which offer enhanced spatial resolution allowing insights into new biological processes. A typical drawback of using these methods is the need for new, complex optical set-ups. This becomes even more significant when using two-photon fluorescence excitation, which offers deep tissue imaging and excellent z-sectioning. We show that the generation of striped-illumination patterns in two-photon laser scanning microscopy can readily be exploited for achieving optical super-resolution and contrast enhancement using open-source image reconstruction software. The special appeal of this approach is that even in the case of a commercial two-photon laser scanning microscope no optomechanical modifications are required to achieve this modality. Modifying the scanning software with a custom-written macro to address the scanning mirrors in combination with rapid intensity switching by an electro-optic modulator is sufficient to accomplish the acquisition of two-photon striped-illumination patterns on an sCMOS camera. We demonstrate and analyse the resulting resolution improvement by applying different recently published image resolution evaluation procedures to the reconstructed filtered widefield and super-resolved images. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)'.

Optica ◽  
2014 ◽  
Vol 1 (3) ◽  
pp. 181 ◽  
Author(s):  
Peter W. Winter ◽  
Andrew G. York ◽  
Damian Dalle Nogare ◽  
Maria Ingaramo ◽  
Ryan Christensen ◽  
...  

2020 ◽  
Author(s):  
Murat Sunbul ◽  
Jens Lackner ◽  
Annabell Martin ◽  
Daniel Englert ◽  
Benjamin Hacene ◽  
...  

AbstractRhoBAST is a novel fluorescence light-up RNA aptamer (FLAP) that transiently binds a fluorogenic rhodamine dye. Fast dye association and dissociation result in intermittent fluorescence emission, facilitating single-molecule localization microscopy (SMLM) with an image resolution not limited by photobleaching. We demonstrate RhoBAST's excellent properties as a RNA marker by resolving subcellular and subnuclear structures of RNA in live and fixed cells by SMLM and structured illumination microscopy (SIM).


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Marcel Müller ◽  
Viola Mönkemöller ◽  
Simon Hennig ◽  
Wolfgang Hübner ◽  
Thomas Huser

Sign in / Sign up

Export Citation Format

Share Document