rna aptamer
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 116)

H-INDEX

53
(FIVE YEARS 8)

Nano Letters ◽  
2022 ◽  
Author(s):  
Ya Gao ◽  
Yurui Xu ◽  
Yanyan Li ◽  
Kerong Chen ◽  
Xiaotong Wu ◽  
...  
Keyword(s):  

2022 ◽  
pp. 2107852
Author(s):  
Imran Ozer ◽  
George A. Pitoc ◽  
Juliana M. Layzer ◽  
Angelo Moreno ◽  
Lyra B. Olson ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Chenfei Shen ◽  
Xianwei Wang ◽  
Xiao He

Fluorescent RNA aptamers have been successfully applied to track and tag RNA in a biological system. However, it is still challenging to predict the excited-state properties of the RNA aptamer–fluorophore complex with the traditional electronic structure methods due to expensive computational costs. In this study, an accurate and efficient fragmentation quantum mechanical (QM) approach of the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) scheme was applied for calculations of excited-state properties of the RNA aptamer–fluorophore complex. In this method, the excited-state properties were first calculated with one-body fragment quantum mechanics/molecular mechanics (QM/MM) calculation (the excited-state properties of the fluorophore) and then corrected with a series of two-body fragment QM calculations for accounting for the QM effects from the RNA on the excited-state properties of the fluorophore. The performance of the EE-GMFCC on prediction of the absolute excitation energies, the corresponding transition electric dipole moment (TEDM), and atomic forces at both the TD-HF and TD-DFT levels was tested using the Mango-II RNA aptamer system as a model system. The results demonstrate that the calculated excited-state properties by EE-GMFCC are in excellent agreement with the traditional full-system time-dependent ab initio calculations. Moreover, the EE-GMFCC method is capable of providing an accurate prediction of the relative conformational excited-state energies for different configurations of the Mango-II RNA aptamer system extracted from the molecular dynamics (MD) simulations. The fragmentation method further provides a straightforward approach to decompose the excitation energy contribution per ribonucleotide around the fluorophore and then reveals the influence of the local chemical environment on the fluorophore. The applications of EE-GMFCC in calculations of excitation energies for other RNA aptamer–fluorophore complexes demonstrate that the EE-GMFCC method is a general approach for accurate and efficient calculations of excited-state properties of fluorescent RNAs.


2021 ◽  
Vol 118 (50) ◽  
pp. e2112942118
Author(s):  
Julián Valero ◽  
Laia Civit ◽  
Daniel M. Dupont ◽  
Denis Selnihhin ◽  
Line S. Reinert ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2′-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer–spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Author(s):  
Balasubramanian Harish ◽  
Jinqiu Wang ◽  
Eric J. Hayden ◽  
Bastian Grabe ◽  
Wolf Hiller ◽  
...  

2021 ◽  
Author(s):  
Aitor Patiño Diaz ◽  
Sara Bracaglia ◽  
Simona Ranallo ◽  
Tania Patiño ◽  
Alessandro Porchetta ◽  
...  

We report here the development of a cell-free in-vitro transcription system for the detection of specific target antibodies. The approach is based on the use of programmable antigen-conjugated DNA-based conformational switches that, upon binding to a target antibody, can trigger the cell-free transcription of a light-up fluorescence-activating RNA aptamer. The system couples the unique programmability and responsiveness of DNA-based systems with the specificity and sensitivity offered by in-vitro genetic circuitries and commercially available transcription kits. We demonstrate that cell-free transcriptional switches can efficiently measure antibody levels directly in blood serum. Thanks to the programmable nature of the sensing platform the method can be adapted to different antibodies: we demonstrate here the sensitive, rapid and cost-effective detection of three different antibodies and the possible use of this approach for the simultaneous detection of two antibodies in the same solution.


2021 ◽  
Author(s):  
Yiping Chai ◽  
Yuanyuan Jiang ◽  
Junya Wang ◽  
Dexin Qiao ◽  
Yu Zhang ◽  
...  

Prime editing is a universal and very promising precise genome editing technology. However, optimization of prime editor (PE) from different aspects remains vital for its use as a routine tool in plant basic research and crop molecular breeding. In this report, we tested MS2-based prime editor (MS2PE). We fused the M-MLV reverse transcriptase (RT) gene variant to the MS2 RNA binding protein gene, MCP, and allowed the MCP-RT fusion gene to co-express with the SpCas9 nickase gene, SpCas9H840A, and various engineered pegRNAs harboring MS2 RNA (MS2pegR). Compared with control PEs, MS2PEs significantly enhanced editing efficiency at four of six targets in rice protoplasts, and achieved 1.2~10.1-fold increase in editing efficiency at five of six targets in transgenic rice lines. Furthermore, we tested total 22 different MS2pegR scaffolds, 3 RT variants or genes, 2 MCP variants, and various combinations of the Cas9 nickase, RT, and MCP modules. Our results demonstrated an alternative strategy for enhancing prime editing.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5220
Author(s):  
Carla L. Esposito ◽  
Katrien Van Roosbroeck ◽  
Gianluca Santamaria ◽  
Deborah Rotoli ◽  
Annamaria Sandomenico ◽  
...  

The transmembrane glycoprotein cluster of differentiation 19 (CD19) is a B cell–specific surface marker, expressed on the majority of neoplastic B cells, and has recently emerged as a very attractive biomarker and therapeutic target for B-cell malignancies. The development of safe and effective ligands for CD19 has become an important need for the development of targeted conventional and immunotherapies. In this regard, aptamers represent a very interesting class of molecules. Additionally referred to as ‘chemical antibodies’, they show many advantages as therapeutics, including low toxicity and immunogenicity. Here, we isolated a nuclease-resistant RNA aptamer binding to the human CD19 glycoprotein. In order to develop an aptamer also useful as a carrier for secondary reagents, we adopted a cell-based SELEX (Systematic Evolution of Ligands by EXponential Enrichment) protocol adapted to isolate aptamers able to internalise upon binding to their cell surface target. We describe a 2′-fluoro pyrimidine modified aptamer, named B85.T2, which specifically binds to CD19 and shows an exquisite stability in human serum. The aptamer showed an estimated dissociation constant (KD) of 49.9 ± 13 nM on purified human recombinant CD19 (rhCD19) glycoprotein, a good binding activity on human B-cell chronic lymphocytic leukaemia cells expressing CD19, and also an effective and rapid cell internalisation, thus representing a promising molecule for CD19 targeting, as well as for the development of new B-cell malignancy-targeted therapies.


2021 ◽  
Author(s):  
Xing Li ◽  
Jiahui Wu ◽  
Samie R. Jaffrey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document