scholarly journals The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells

2002 ◽  
Vol 83 (5) ◽  
pp. 997-1003 ◽  
Author(s):  
B. Karsten Tischer ◽  
Daniel Schumacher ◽  
Martin Messerle ◽  
Markus Wagner ◽  
Nikolaus Osterrieder

The role of the products of the UL10 and the UL49.5 homologous genes of Marek’s disease virus serotype 1 (MDV-1) in virus replication was investigated. Deletion of either open reading frame in an infectious bacterial artificial chromosome clone (BAC20) of MDV-1 resulted in progeny viruses that were unable to spread from cell to cell. After transfection of UL10- or UL49.5-negative BAC20 DNA into chicken or quail cells, only single infected cells were observed by indirect immunofluorescence analysis. In contrast, plaque formation was restored when mutant BAC DNAs were co-transfected with the corresponding expression plasmid encoding either the UL10-encoded gM or the UL49.5 gene product. These data demonstrate that gM and its putative complex partner, the UL49.5 homologous protein, are essential for MDV-1 growth in cultured cells. Thus, MDV-1 represents the first example of a member of the family Herpesviridae for which the highly conserved membrane proteins are indispensable for cell-to-cell spread.

2002 ◽  
Vol 76 (4) ◽  
pp. 1959-1970 ◽  
Author(s):  
Fabien Dorange ◽  
B. Karsten Tischer ◽  
Jean-François Vautherot ◽  
Nikolaus Osterrieder

ABSTRACT Experiments were conducted to investigate the roles of Marek's disease virus serotype 1 (MDV-1) major tegument proteins VP11/12, VP13/14, VP16, and VP22 in viral growth in cultured cells. Based on a bacterial artificial chromosome clone of MDV-1 (BAC20), mutant viruses were constructed in which the MDV-1 homologs of UL46, UL47, UL48, or UL49 were deleted alone and in various combinations. It could be demonstrated that the UL46, UL47, and UL48 genes are dispensable for MDV-1 growth in chicken embryonic skin and quail muscle QM7 cells, although the generated virus mutants exhibited reduced plaque sizes in all cell types investigated. In contrast, a UL49-negative MDV-1 (20Δ49) and a UL48-UL49 (20Δ48-49) doubly negative mutant were not able to produce MDV-1-specific plaques on either cell type. It was confirmed that this growth restriction is dependent on the absence of VP22 expression, because growth of these mutant viruses could be partially restored on cells that were cotransfected with a UL49 expression plasmid. In addition, we were able to demonstrate that cell-to-cell spread of MDV-1 conferred by VP22 is dependent on the expression of amino acids 37 to 187 of MDV-1 VP22, because expression plasmids containing MDV-1 UL49 mutant genes with deletions of amino acids 1 to 37 or 188 to 250 were still able to restore partial growth of the 20Δ49 and 20Δ48-49 viruses. These results demonstrate for the first time that an alphaherpesvirus UL49-homologous gene is essential for virus growth in cell culture.


2007 ◽  
Vol 88 (8) ◽  
pp. 2121-2128 ◽  
Author(s):  
Aminul Islam ◽  
Stephen W. Walkden-Brown

The shedding profile of Marek's disease virus serotype 1 (MDV1, virulent), serotype 2 (MDV2, vaccinal) and herpesvirus of turkeys (HVT, vaccinal) in commercial broiler chickens was determined by measuring the daily rate of production of feather dander from chickens housed in isolators and by quantifying the viral load of each of these serotypes in the dander using quantitative real-time PCR (qPCR). MDV1 and HVT viruses were detectable in dander filtered from isolator exhaust air from day 7 and MDV2 from day 12 after infection and thereafter until the end of the experiment at 61 days of age of the chickens. There was no difference in shedding rate among the three MDV1 isolates. Daily shedding of MDV1 increased sharply between days 7 and 28 and stabilized thereafter at about 109 virus copies per chicken per day, irrespective of vaccination status. Challenge with the three different MDV1 isolates markedly increased shedding of the vaccinal viruses HVT and MDV2 in dander by 38- and 75-fold, respectively. These results demonstrate the utility of qPCR for the differentiation and quantification of different MDV serotypes in feather dander and have significant implications for the routine monitoring of Marek's disease using qPCR assays of dust, for epidemiological modelling of the behaviour and spread of MDVs in chicken populations and for studies into the evolution of virulence in MDV1 in the face of blanket vaccination with imperfect vaccines that ameliorate disease but do not prevent infection and replication of virulent virus.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 466 ◽  
Author(s):  
Jun Luo ◽  
Man Teng ◽  
Xusheng Zai ◽  
Na Tang ◽  
Yaoyao Zhang ◽  
...  

The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek’s disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.


2015 ◽  
Vol 59 (02) ◽  
pp. 156-165 ◽  
Author(s):  
P. SURESH ◽  
J. JOHNSON RAJESWAR ◽  
K. SUKUMAR ◽  
T. J. HARIKRISHNAN ◽  
P. SRINIVASAN

Sign in / Sign up

Export Citation Format

Share Document