marek’s disease virus
Recently Published Documents


TOTAL DOCUMENTS

999
(FIVE YEARS 134)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Nitish Boodhoo ◽  
Shahriar Behboudi

Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Jegarubee Bavananthasivam ◽  
Nadiyah Alqazlan ◽  
Mohammadali Alizadeh ◽  
Ayumi Matsuyama-Kato ◽  
Jake Astill ◽  
...  

Vaccines against Marek’s disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek’s disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and CD4+ transforming growth factor-beta (TGF-β)+ T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory T cells. Furthermore, the expression of TGF-β and programmed cell death receptor (PD)-1 increased considerably in the feathers of Marek’s disease virus-infected chickens. The results of the present study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive strategies employed by MDV will facilitate the development of control measures to prevent viral replication and transmission.


2021 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Steven J. Conrad ◽  
Eniope B. Oluwayinka ◽  
Mohammad Heidari ◽  
Jody K. Mays ◽  
John R. Dunn

Marek’s disease (MD) is a ubiquitous disease of domesticated chickens and its etiologic agent is the Gallid alphaherpesvirus 2 (GaHV-2), also known as Marek’s disease virus (MDV). MD is currently controlled by vaccination using live attenuated strains of MDV (e.g., CVI988/Rispens), non-pathogenic serotypes of MDV (GaHV-3), or non-pathogenic strains of the related Melagrid alphaherpesvirus 1 (MeHV-1). One attractive strategy for the production of new vaccine strains is a recombinant MDV attenuated by the deletion of the major viral oncogene meq. However, meq-deleted variants of MDV cause atrophy of the bursa and thymus in maternal antibody-negative chickens, and the resulting immunosuppression makes them unsuitable. Herein we detail our attempt to mitigate the lymphoid atrophy caused by meq-deleted MDV by further attenuation of the virus through ablation of the viral thymidine kinase (tk) gene. We demonstrate that ablation of the viral tk from the meq-deleted virus rMd5B40/Δmeq resulted in a virus attenuated for replication in vitro and which spared chickens from atrophy of the lymphoid organs in vivo. When the rMd5B40/Δmeq/Δtk/GFP was used as a vaccine it was protective against challenge with the vv+MDV strain 686, but the protection was less than that provided by the CVI988/Rispens vaccine.


2021 ◽  
Author(s):  
Corentin Mallet ◽  
Jade Cochard ◽  
Sébastien Leclercq ◽  
Laetitia Trapp-Fragnet ◽  
Philippe Chouteau ◽  
...  

Latency is a hallmark of herpesviruses, allowing them to persist into their host without virions production. Acute exposure to hypoxia (below 3% O 2 ) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gamma-herpesviruses (KSHV and EBV). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek’s disease virus (MDV), sharing biological properties with EBV and KSHV (notably oncogenic properties), into lymphocytes. Acute exposure to hypoxia (1% O 2 ) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia-response element consensus sequences on 119 open reading frames. RT-qPCR analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl 2 ) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor-1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. In such conditions, lytic cycle was detected in cells with a sustainable HIF-1α expression, but also in HIF-1α negative cells, indicating that MDV reactivation is mediated by HIF-1, in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed in vivo in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors. IMPORTANCE Latent-to-lytic switch of herpesviruses (aka reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alpha-herpesvirus establishing latency in T-lymphocytes and causing lethal T-lymphomas in chickens. In vivo , a second lytic phase is observed during tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently-infected T-lymphocytes, like previously shown for EBV and KSHV in B-lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor (HIF-1) overexpression induces MDV reactivation to a similar extend than hypoxia after 24 hours. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genus.


2021 ◽  
pp. 109305
Author(s):  
K. Senthil Kumar ◽  
Suresh P. ◽  
Sukumar K. ◽  
Saravanan S. ◽  
Raja A. ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 2489
Author(s):  
Yu You ◽  
Tereza Vychodil ◽  
Giulia Aimola ◽  
Renato L. Previdelli ◽  
Thomas W. Göbel ◽  
...  

Marek’s disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes a devastating neoplastic disease in chickens. MDV has been shown to integrate its genome into the telomeres of latently infected and tumor cells, which is crucial for efficient tumor formation. Telomeric repeat arrays present at the ends of the MDV genome facilitate this integration into host telomeres; however, the integration mechanism remains poorly understood. Until now, MDV integration could only be investigated qualitatively upon infection of chickens. To shed further light on the integration mechanism, we established a quantitative integration assay using chicken T cell lines, the target cells for MDV latency and transformation. We optimized the infection conditions and assessed the establishment of latency in these T cells. The MDV genome was efficiently maintained over time, and integration was confirmed in these cells by fluorescence in situ hybridization (FISH). To assess the role of the two distinct viral telomeric repeat arrays in the integration process, we tested various knockout mutants in our in vitro integration assay. Efficient genome maintenance and integration was thereby dependent on the presence of the telomeric repeat arrays in the virus genome. Taken together, we developed and validated a novel in vitro integration assay that will shed light on the integration mechanism of this highly oncogenic virus into host telomeres.


2021 ◽  
Vol Volume 12 ◽  
pp. 347-357
Author(s):  
Yasin Mohammed Yimer ◽  
Destaw Asfaw Ali ◽  
Belayneh Getachew Ayalew ◽  
Molalegne Bitew Asires ◽  
Esayas Gelaye

2021 ◽  
Vol 22 (22) ◽  
pp. 12375
Author(s):  
Huifeng He ◽  
Dandan Qiao ◽  
Lu Zhang ◽  
Yongxiu Yao ◽  
Hongxia Shao ◽  
...  

To investigate the antiviral effect of lithium chloride (LiCl) on the replication of Marek’s disease virus (MDV) in chicken embryonic fibroblast (CEF) cells, real-time PCR, Western blotting, plaque counting, and indirect immunofluorescence experiments were performed at different time points of LiCl treated CEF cells with virus infection. The results demonstrated that LiCl could affect multiple steps of virus replication and inhibit viral gene expression and protein synthesis in a dose- and time-dependent manner. Moreover, LiCl could directly affect viral infectivity as well. In addition, LiCl significantly affected the gene expression of IFN-β related genes in virus-infected cells. These results indicate that LiCl significantly inhibits MDV replication and proliferation in CEF cells and it has the potential to be used as an antiviral agent against MDV.


2021 ◽  
Vol 17 (10) ◽  
pp. e1010006
Author(s):  
Laëtitia Trapp-Fragnet ◽  
Julia Schermuly ◽  
Marina Kohn ◽  
Luca D. Bertzbach ◽  
Florian Pfaff ◽  
...  

Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1630
Author(s):  
Marla C. Glass ◽  
Justin M. Smith ◽  
Hans H. Cheng ◽  
Mary E. Delany

The avian α-herpesvirus known as Marek’s disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek’s disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of ‘MDV telomere-integrated only’, and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32–50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51–62 dpi) and establish metastatic lymphomas.


Sign in / Sign up

Export Citation Format

Share Document