scholarly journals In-vitro and in-vivo characteristics of TnphoA mutant strains of Salmonella serotype Gallinarum not invasive for tissue culture cells

1992 ◽  
Vol 36 (6) ◽  
pp. 389-397 ◽  
Author(s):  
P. A. Barrow ◽  
M. A. Lovell ◽  
D. C. Old
Author(s):  
W. David Arnold ◽  
Arthur H. M. Burghes

Spinal muscular Atrophy (SMA) is caused by reduced levels of the SMN protein. In humans this is caused by loss of SMN1 and retention of SMN2. The challenge in modelling SMA, in either tissue culture cells or animals, is first to obtain the desired SMN levels equivalent to what is observed in SMA. Various models of SMA in tissue culture cells, invertebrates, and mammals have been created have been developed. The targets of SMN reduction that are most relevant for the pathogenesis of SMA and how the phenotype of SMA can be modified independent of SMN levels are two important questions that remain unanswered. Here the current in vitro and in vivo models of SMA are summarized.


1961 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. F. Parsons ◽  
M. A. Bender ◽  
E. B. Darden ◽  
Guthrie T. Pratt ◽  
D. L. Lindsley

The X5563 tumor has been grown in tissue culture. Cells similar to those of the original tumor migrated from the explant and attached to the glass walls of the culture vessels. Electron microscopy showed that large numbers of particles, similar in morphology to virus particles, were associated with these cells after 7 days of culture. The two principal types of particles found in the tumor in vivo appear to be present in vitro. Many more of these particles, however, were larger and showed a more complex structure. Whereas the particles were mainly localized inside endoplasmic reticulum or the Golgi zone in the tumors in vivo, in the tissue culture the majority of the particles were associated with the plasma membrane and were found outside of the cells. The relation of the particles to the granular body is discussed as well as a possible relation to the mammary tumor agent.


2008 ◽  
Vol 183 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Chawon Yun ◽  
Yonggang Wang ◽  
Debaditya Mukhopadhyay ◽  
Peter Backlund ◽  
Nagamalleswari Kolli ◽  
...  

Ubiquitin-like protein/sentrin-specific proteases (Ulp/SENPs) mediate both processing and deconjugation of small ubiquitin-like modifier proteins (SUMOs). Here, we show that Ulp/SENP family members SENP3 and SENP5 localize within the granular component of the nucleolus, a subnucleolar compartment that contains B23/nucleophosmin. B23/nucleophosmin is an abundant shuttling phosphoprotein, which plays important roles in ribosome biogenesis and which has been strongly implicated in hematopoietic malignancies. Moreover, we found that B23/nucleophosmin binds SENP3 and SENP5 in Xenopus laevis egg extracts and that it is essential for stable accumulation of SENP3 and SENP5 in mammalian tissue culture cells. After either codepletion of SENP3 and SENP5 or depletion of B23/nucleophosmin, we observed accumulation of SUMO proteins within nucleoli. Finally, depletion of these Ulp/SENPs causes defects in ribosome biogenesis reminiscent of phenotypes observed in the absence of B23/nucleophosmin. Together, these results suggest that regulation of SUMO deconjugation may be a major facet of B23/nucleophosmin function in vivo.


2003 ◽  
Vol 14 (12) ◽  
pp. 5089-5097 ◽  
Author(s):  
Stephen J. King ◽  
Christa L. Brown ◽  
Kerstin C. Maier ◽  
Nicholas J. Quintyne ◽  
Trina A. Schroer

Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document