scholarly journals Analysis of the Dynein-Dynactin Interaction In Vitro and In Vivo

2003 ◽  
Vol 14 (12) ◽  
pp. 5089-5097 ◽  
Author(s):  
Stephen J. King ◽  
Christa L. Brown ◽  
Kerstin C. Maier ◽  
Nicholas J. Quintyne ◽  
Trina A. Schroer

Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms.

1999 ◽  
Vol 147 (2) ◽  
pp. 321-334 ◽  
Author(s):  
N.J. Quintyne ◽  
S.R. Gill ◽  
D.M. Eckley ◽  
C.L. Crego ◽  
D.A. Compton ◽  
...  

The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein–dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein–dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome–lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, γ tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin–cargo interactions.


1999 ◽  
Vol 147 (6) ◽  
pp. 1261-1274 ◽  
Author(s):  
Shuo Ma ◽  
Leda Triviños-Lagos ◽  
Ralph Gräf ◽  
Rex L. Chisholm

Cytoplasmic dynein intermediate chain (IC) mediates dynein–dynactin interaction in vitro (Karki, S., and E.L. Holzbaur. 1995. J. Biol. Chem. 270:28806–28811; Vaughan, K.T., and R.B. Vallee. 1995. J. Cell Biol. 131:1507–1516). To investigate the physiological role of IC and dynein–dynactin interaction, we expressed IC truncations in wild-type Dictyostelium cells. ICΔC associated with dynactin but not with dynein heavy chain, whereas ICΔN truncations bound to dynein but bound dynactin poorly. Both mutations resulted in abnormal localization to the Golgi complex, confirming dynein function was disrupted. Striking disorganization of interphase microtubule (MT) networks was observed when mutant expression was induced. In a majority of cells, the MT networks collapsed into large bundles. We also observed cells with multiple cytoplasmic asters and MTs lacking an organizing center. These cells accumulated abnormal DNA content, suggesting a defect in mitosis. Striking defects in centrosome morphology were also observed in IC mutants, mostly larger than normal centrosomes. Ultrastructural analysis of centrosomes in IC mutants showed interphase accumulation of large centrosomes typical of prophase as well as unusually paired centrosomes, suggesting defects in centrosome replication and separation. These results suggest that dynactin-mediated cytoplasmic dynein function is required for the proper organization of interphase MT network as well as centrosome replication and separation in Dictyostelium.


1989 ◽  
Vol 94 (4) ◽  
pp. 725-731
Author(s):  
M.E. Bramwell ◽  
S.M. Humm

Using immunoblotting techniques, the antigen that binds the monoclonal antibody M27 has been clearly defined in terms of apparent molecular mass and distribution. In reducing conditions it has an apparent mass of 178K (K = 10(3) Mr) and is present in the cytoplasm and membranes of all mammalian tissue culture cells so far examined. It is absent from lines derived from avian, piscine and amphibian sources. It is also absent from foetal liver of both rat and mouse, but subsequently appears after cultivation in vitro. Similarly, it can be detected on rat lymphocytes only after mitogenic stimulation. However, it is found on both hepatoma and lymphoma cells in vitro, and on in vivo tumours from murine sources. It thus appears to be associated with cell proliferation.


1996 ◽  
Vol 133 (2) ◽  
pp. 359-369 ◽  
Author(s):  
N A Chitaev ◽  
R E Leube ◽  
R B Troyanovsky ◽  
L G Eshkind ◽  
W W Franke ◽  
...  

Plakoglobin is the only protein that occurs in the cytoplasmic plaques of all known adhering junctions and has been shown to be crucially involved in the formation and maintenance of desmosomes anchoring intermediate-sized filaments (IFs) by its interaction with the desmosomal cadherins, desmoglein (Dsg), and desmocollin (Dsc). This topogenic importance of plakoglobin is now directly shown in living cells as well as in binding assays in vitro. We show that, in transfected human A-431 carcinoma cells, a chimeric protein combining the vesicle-forming transmembrane glycoprotein synaptophysin, with the complete human plakoglobin sequence, is sorted to small vesicles many of which associate with desmosomal plaques and their attached IFs. Immunoprecipitation experiments have further revealed that the chimeric plakoglobin-containing transmembrane molecules of these vesicles are tightly bound to Dsg and Dsc but not to endogenous plakoglobin, thus demonstrating that the binding of plakoglobin to desmosomal cadherins does not require its soluble state and is strong enough to attach large structures such as vesicles to desmosomes. To identify the binding domains and the mechanisms involved in the interaction of plakoglobin with desmosomal cadherins, we have developed direct binding assays in vitro in which plakoglobin or parts thereof, produced by recombinant DNA technology in E. coli, are exposed to molecules containing the "C-domains" of several cadherins. These assays have shown that plakoglobin associates most tightly with the C-domain of Dsg, to a lesser degree with that of Dsc and only weakly with the C-domain of E-cadherin. Three separate segments of plakoglobin containing various numbers of the so-called arm repeats exhibit distinct binding to the desmosomal cadherins comparable in strength to that of the entire molecule. The binding pattern of plakoglobin segments in vitro is compared with that in vivo. Paradoxically, in vitro some internal plakoglobin fragments bind even better to the C-domain of E-cadherin than the entire molecule, indicating that elements exist in native plakoglobin that interfere with the interaction of this protein with its various cadherin partners.


1981 ◽  
Vol 49 (1) ◽  
pp. 195-204
Author(s):  
J.C. Havercroft ◽  
R.A. Quinlan ◽  
K. Gull

We have shown that the benzimidazole carbamate, parbendazole, is a potent inhibitor of microtubule assembly in vitro and in vivo. Radiolabelled parbendazole was shown to bind to purified tubulin. Immunofluorescence studies using antitubulin antibody showed that parbendazole effectively depolymerizes cytoplasmic microtubules in animal cells leaving only one or two microtubules associated with one centriole. The usefulness of parbendazole and other benzimidazole carbamates as inhibitors of microtubule functions is discussed.


Author(s):  
W. David Arnold ◽  
Arthur H. M. Burghes

Spinal muscular Atrophy (SMA) is caused by reduced levels of the SMN protein. In humans this is caused by loss of SMN1 and retention of SMN2. The challenge in modelling SMA, in either tissue culture cells or animals, is first to obtain the desired SMN levels equivalent to what is observed in SMA. Various models of SMA in tissue culture cells, invertebrates, and mammals have been created have been developed. The targets of SMN reduction that are most relevant for the pathogenesis of SMA and how the phenotype of SMA can be modified independent of SMN levels are two important questions that remain unanswered. Here the current in vitro and in vivo models of SMA are summarized.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Janire Urrutia ◽  
Alejandra Aguado ◽  
Carolina Gomis-Perez ◽  
Arantza Muguruza-Montero ◽  
Oscar R. Ballesteros ◽  
...  

Abstract Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


1984 ◽  
Vol 30 (3) ◽  
pp. 381-388 ◽  
Author(s):  
B. R. Merrell ◽  
R. I. Walker ◽  
S. W. Joseph

The initial interaction and adherence of Vibrio parahemolyticus to epithelial tissue culture cells, human buccal epithelial cells, and the ileal mucosa of mice were studied. Using scanning electron microscopy, adherent bacteria were observed only on degenerating human embryonic intestinal, HeLa, and buccal cells; healthy normal cells were devoid of bacteria. Sheared V. parahaemolyticus, i.e., lacking flagella, did not adhere to either normal or degenerating tissue cells. Neither ultraviolet-inactivated organisms nor cell-free culture supernate affected the epithelial cells. Similar findings were observed on the mucosa of the ileum in mice inoculated with V. parahaemolyticus. It appears that V. parahaemolyticus possesses a cytotoxic factor which alters epithelial cells. This factor appears to be closely associated with viable organisms and may be a functional element in the adherence process of flagellated V. parahaemolyticus to mammalian epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document