genotoxicity testing
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Levylee G. Bautista ◽  
Dawn Grace E. Santos ◽  
Ghafoor A. Haque, Jr. I ◽  
Aishwarya V. Veluchamy ◽  
Jesusa E. Santos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhiannon David ◽  
Sarah Gee ◽  
Kainat Khan ◽  
Amy Wilson ◽  
Ann Doherty

AbstractMicronucleus (MN) assessment is a valuable tool in safety assessment. However, several compounds are positive in the in vivo bone marrow (BM) MN assay but negative in vitro, reflecting that BM complexity is not recapitulated in vitro. Importantly, these compounds are not genotoxic; rather, drug-driven pharmacological-effects on the BM increase MN, however, without mechanistic understanding, in vivo positives stop drug-progression. Thus, physiologically-relevant BM models are required to bridge the gap between in vitro and in vivo. The current study aimed to investigate the utility of two human 3D BM models (fluidic and static) for MN assessment. MN induction following treatment with etoposide and Poly-ADP Ribose Polymerase inhibitor (PARPi) and prednisolone (negative in vitro, positive in vivo) was determined in 2D L5178Y and human BM cells, and the 3D BM models. Etoposide (0–0.070 µM) and PARPi (0–150 µM) induced MN in both 3D BM models indicating their utility for genotoxicity testing. Interestingly, PARPi treatment induced a MN trend in 3D more comparable to in vivo. Importantly, prednisolone (0–1.7 mM) induced MN in both 3D BM models, suggesting recapitulation of the in vivo microenvironment. These models could provide a valuable tool to follow up, and eventually predict, suspected pharmacological mechanisms, thereby reducing animal studies.


Author(s):  
Ezgi Eyluel Bankoglu ◽  
Carolin Schuele ◽  
Helga Stopper

AbstractThe comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H2O2) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20–30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H2O2 or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided.


2021 ◽  
Vol 350 ◽  
pp. S122-S123
Author(s):  
E. Rundén-Pran ◽  
E. Mariussen ◽  
E. Elje ◽  
A. Chary ◽  
E.M. Longhin ◽  
...  

Author(s):  
Merle Marie Nicolai ◽  
Barbara Witt ◽  
Andrea Hartwig ◽  
Tanja Schwerdtle ◽  
Julia Bornhorst

AbstractThe identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.


2021 ◽  
Vol 9 ◽  
Author(s):  
Julie K. Buick ◽  
Andrew Williams ◽  
Matthew J. Meier ◽  
Carol D. Swartz ◽  
Leslie Recio ◽  
...  

Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip® assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip® classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip® assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.


2021 ◽  
Vol 22 (16) ◽  
pp. 8558
Author(s):  
Natalia Fernández-Bertólez ◽  
Fátima Brandão ◽  
Carla Costa ◽  
Eduardo Pásaro ◽  
João Paulo Teixeira ◽  
...  

Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Gillian E Conway ◽  
Ume-Kulsoom Shah ◽  
Samantha Llewellyn ◽  
Tereza Cervena ◽  
Stephen J Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document