scholarly journals Pedobacter bauzanensis sp. nov., isolated from soil

2010 ◽  
Vol 60 (11) ◽  
pp. 2592-2595 ◽  
Author(s):  
De-Chao Zhang ◽  
Franz Schinner ◽  
Rosa Margesin

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated BZ42T, was isolated from the soil of an industrial site. Strain BZ42T was able to grow at 5–25 °C. The major fatty acids were iso-C15 : 0 (46.2 %), C16 : 1 ω7c and/or iso-C15 : 0 2-OH (23.2 %) and iso-C17 : 0 3-OH (9.1 %). The predominant menaquinone was MK-7. The genomic DNA G+C content was 36.5 mol% (HPLC). 16S rRNA gene sequence phylogenetic analysis revealed that strain BZ42T was a member of the genus Pedobacter, family Sphingobacteriaceae, and 16S rRNA gene sequence similarities between strain BZ42T and the type strains of species of the genus Pedobacter with validly published names were 90.4–93.2 %. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain BZ42T was considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter bauzanensis sp. nov. is proposed. The type strain is BZ42T (=DSM 22554T =CGMCC 1.10187T =CIP 110134T).

2007 ◽  
Vol 57 (12) ◽  
pp. 2810-2813 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Young-Ah Jeon ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial isolates from ginseng fields in Korea, strains GR17-7T and GP18-1T, were characterized using a polyphasic approach. Phylogenetic analysis of their 16S rRNA gene sequences revealed a clear affiliation with the Gammaproteobacteria, and showed that the closest phylogenetic relationships were with members of the genus Rhodanobacter. The 16S rRNA gene sequence similarity between strains GR17-7T and GP18-1T was 97.2 %. Both strains showed 16S rRNA gene sequence similarities of 95.2–96.9 % to type strains of recognized Rhodanobacter species. The G+C contents of the DNA of strains GR17-7T and GP18-1T were 61.0 and 62.5 mol%, respectively. According to the DNA–DNA hydridization tests, the hybridization value between strains GR17-7T and GP18-1T was 34 %. Strains GR17-7T and GP18-1T showed less than 32 % DNA–DNA relatedness with Rhodanobacter fulvus KCTC 12098T and Rhodanobacter spathiphylli LMG 23181T. Strains GR17-7T and GP18-1T were aerobic, Gram-negative, rod-shaped, and catalase- and oxidase-positive. Major fatty acids of both strains were iso-C17 : 1 ω9c and iso-C16 : 0. Based on the data presented, two novel Rhodanobacter species are proposed, with the names Rhodanobacter ginsengisoli sp. nov. (type strain GR17-7T=KACC 11762T=DSM 18993T) and Rhodanobacter terrae sp. nov. (type strain GP18-1T=KACC 11761T=DSM 19241T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


Author(s):  
Zhipeng Cai ◽  
Huibin Lu ◽  
Youfeng Qian ◽  
Letian Chen ◽  
Meiying Xu

Four Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (Y26, Y57T, ZJ14WT and RP18W) were isolated from mariculture fishponds in PR China. Comparisons based on 16S rRNA gene sequences showed that strains Y26 and Y57T share 16S rRNA gene sequence similarities in the range of 95.1−98.5 % with species of the genus Bowmanella , and strains ZJ14WT and RP18W share 16S rRNA gene sequence similarities in the range of 96.7 −98.8 % with species of the genus Amphritea , respectively. The genome sizes of strains Y26, Y57T, ZJ14WT and RP18W were about 4.85, 5.40, 4.70 and 4.70 Mbp with 49.5, 51.7, 51.2 and 51.3 mol% G+C content, respectively. The calculated pairwise OrthoANIu values among strains Y26, Y57T and species of the genus Bowmanella were in the range of 72.6−83.1 %, but the value between strains Y26 and Y57T was 96.2 %. The pairwise OrthoANIu values among strains ZJ14WT, RP18W and other species of the genus Amphritea were all less than 93.9 %, but the value between strains ZJ14WT and RP18W was 99.3 %. Q-8 was the major respiratory quinone of strains Y26, Y57T, ZJ14WT and RP18W, and the major fatty acids of these strains were all C16 : 1 ω7c, C16 : 0 and C18 : 1 ω7c. The predominant polar lipids of strains Y26 and Y57T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol, but strains ZJ14WT and RP18W only contained phosphatidylethanolamine and phosphatidylglycerol. Combining phenotypic, biochemical and genotypic characteristics, strains Y26 and Y57T should belong to the same species and represent a novel member of the genus Bowmanella , and strains ZJ14WT and RP18W should belong to the same species and represent a novel member of the genus Amphritea , for which the names Bowmanella yangjiangensis sp. nov. (type strain Y57T=GDMCC 1.2180T=KCTC 82439T) and Amphritea pacifica sp. nov. (type strain ZJ14WT=GDMCC 1.2203T=KCTC 82438T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1968-1972 ◽  
Author(s):  
Myungjin Lee ◽  
Song-Geun Woo ◽  
Giho Park ◽  
Myung Kyum Kim

A Gram-negative, non-motile bacterium, designated MJ17T, was isolated from sludge at the Daejeon sewage disposal plant in South Korea. Comparative 16S rRNA gene sequence analysis showed that strain MJ17T belonged to the genus Paracoccus in the family Rhodobacteraceae of the class Alphaproteobacteria. 16S rRNA gene sequence similarities between strain MJ17T and type strains of species of the genus Paracoccus were 94.1–97.4 %. The highest similarities were between strain MJ17T and Paracoccus homiensis DD-R11T, Paracoccus zeaxanthinifaciens ATCC 21588T and Paracoccus alcaliphilus JCM 7364T (97.4, 97.2 and 96.3 %, respectively). Strain MJ17T exhibited <22 % DNA–DNA relatedness with P. homiensis KACC 11518T and P. zeaxanthinifaciens JCM 21774T. The G+C content of the genomic DNA was 58.7 mol%. Strain MJ17T contained ubiquinone Q-10. The major fatty acids were C18 : 0 (11.3 %), C16 : 0 (10.2 %) and summed feature 7 (containing one or more of C18 : 1ω7c, C18 : 1ω9c and C18 : 1ω12t; 54.3 %). Poly-β-hydroxybutyrate granules are formed. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, strain MJ17T should be classified in a novel species of the genus Paracoccus, for which the name Paracoccus caeni sp. nov. is proposed. The type strain is MJ17T ( = KCTC 22480T  = JCM 16385T  = KEMB 9004-001T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1675-1680 ◽  
Author(s):  
Marcel Nordhoff ◽  
David Taras ◽  
Moritz Macha ◽  
Karsten Tedin ◽  
Hans-Jürgen Busse ◽  
...  

Limit-dilution procedures were used to isolate seven, helically coiled bacterial strains from faeces of swine that constituted two unidentified taxa. Comparative 16S rRNA gene sequence analysis showed highest similarity values with species of the genus Treponema indicating that the isolates are members of this genus. Strain 7CPL208T, as well as five further isolates, and 14V28T displayed the highest 16S rRNA gene sequence similarities with Treponema pectinovorum ATCC 33768T (92·3 %) and Treponema parvum OMZ 833T (89·9 %), respectively. Polar lipid profiles distinguished 7CPL208T and 14V28T from each other as well as from related species. Based on their phenotypic and genotypic distinctiveness, strains 7CPL208T and 14V28T are suggested to represent two novel species of the genus Treponema, for which the names Treponema berlinense sp. nov. and Treponema porcinum sp. nov. are proposed. The type strain for Treponema berlinense is 7CPL208T (=ATCC BAA-909T=CIP 108244T=JCM 12341T) and for Treponema porcinum 14V28T (=ATCC BAA-908T=CIP 108245T=JCM 12342T).


2005 ◽  
Vol 55 (1) ◽  
pp. 153-157 ◽  
Author(s):  
Valme Jurado ◽  
Ingrid Groth ◽  
Juan M. Gonzalez ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A polyphasic study was carried out to clarify the taxonomic position of two Gram-positive bacteria isolated from soil samples of the Grotta dei Cervi (Italy), a relatively unexplored hypogean environment. The strains, 20-5T and 23-23T, showed phenotypic and phylogenetic characteristics that were consistent with their classification in the genus Agromyces. 16S rRNA gene sequence comparisons revealed that the two strains formed distinct phyletic lines within the genus Agromyces. Based on 16S rRNA gene sequence similarity, chemotaxonomic data and the results of DNA–DNA relatedness studies, it is proposed that the two isolates represent two novel species of the genus Agromyces. Pronounced differences in a broad range of phenotypic characteristics and DNA G+C content distinguished the two strains from each other and from previously described species of the genus Agromyces. Two novel species are proposed: Agromyces salentinus sp. nov. (type strain, 20-5T=HKI 0320T=DSM 16198T=NCIMB 13990T) and Agromyces neolithicus sp. nov. (type strain, 23-23T=HKI 0321T=DSM 16197T=NCIMB 13989T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Sang-Hoon Baek ◽  
Sung-Taik Lee

Two strains, designated B1-1T and B6-8T, were isolated from the Geumho River and the Dalseo Stream in Korea. Comparative 16S rRNA gene sequence analysis showed a clear affiliation of these two bacteria with the class Alphaproteobacteria, their closest relatives being Kaistia adipata KCTC 12095T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T with 16S rRNA gene sequence similarities of 95.3 –97.7 % to the two novel strains. Strains B1-1T and B6-8T shared a 16S rRNA gene sequence similarity value of 96.1 %. Cells of the two strains were Gram-reaction-negative, aerobic, non-motile, short rods or cocci. The predominant ubiquinone was Q-10. The major fatty acids were C16 : 0, C18 : 1ω7c, C18 : 0 and C19 : 0ω8c cyclo for strain B1-1T and C16 : 0, C18 : 1ω7c, C18 : 0, C18 : 1 2-OH, and C19 : 0ω8c cyclo for strain B6-8T. The G+C contents of the genomic DNA of the strains B1-1T and B6-8T were 61.6 and 66.5 mol%, respectively. Based on the results of this polyphasic study, strains B1-1T ( = KCTC 12849T  = DSM 18799T) and B6-8T ( = KCTC 12850T  = DSM 18800T) represent two novel species of the genus Kaistia, for which the names Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov. are proposed, respectively.


2010 ◽  
Vol 60 (6) ◽  
pp. 1296-1302 ◽  
Author(s):  
Fumiko Nagai ◽  
Masami Morotomi ◽  
Yohei Watanabe ◽  
Hiroshi Sakon ◽  
Ryuichiro Tanaka

Two anaerobic, non-spore-forming, non-motile, Gram-negative-staining bacteria, strains YIT 12060T and YIT 12061T, were isolated from human faeces. Cells of strain YIT 12060T were coccoid to rod-shaped with round ends, positive for catalase, negative for indole and oxidase production, produced succinic and acetic acids as end products of glucose metabolism in peptone/yeast extract/glucose medium and had a DNA G+C content of 55.2 mol%. The main respiratory quinones were MK-10 (40 %) and MK-11 (57 %). Fatty acid analysis demonstrated the presence of a high concentration of iso-C15 : 0 (56 %). Following 16S rRNA gene sequence analysis, this strain was found to be most closely related to species of the genus Alistipes, with 90.9–92.6 % gene sequence similarities to type strains of this species. Phylogenetic analysis and biochemical data supported the affiliation of strain YIT 12060T to the genus Alistipes of the family ‘Rikenellaceae’. Strain YIT 12060T therefore represents a novel species of the genus Alistipes for which the name Alistipes indistinctus sp. nov. is proposed; the type strain is YIT 12060T (=DSM 22520T=JCM 16068T). Cells of the other isolate, strain YIT 12061T, were pleomorphic rods that were asaccharolytic, catalase- and oxidase-negative, positive for gelatin hydrolysis and indole production, produced small amounts of succinic, acetic and iso-valeric acids as end products of metabolism in peptone/yeast extract medium and had a DNA G+C content of approximately 42.4 mol%. On the basis of 16S rRNA gene sequence similarity values, this strain was shown to belong to the family ‘Porphyromonadaceae’ and related to the type strains of Odoribacter splanchnicus (89.6 %) and Odoribacter denticanis (86.2 %); similarity values with strains of recognized species within the family ‘Porphyromonadaceae’ were less than 84 %. Biochemical data supported the affiliation of strain YIT 12061T to the genus Odoribacter. Strain YIT 12061T therefore represents a novel species for which the name Odoribacter laneus sp. nov. is proposed; the type strain is YIT 12061T (=DSM 22474T=JCM 16069T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2629-2635 ◽  
Author(s):  
Margarita Gomila ◽  
Botho Bowien ◽  
Enevold Falsen ◽  
Edward R. B. Moore ◽  
Jorge Lalucat

Three Gram-negative, rod-shaped, non-spore-forming bacteria (strains CCUG 52769T, CCUG 52770 and CCUG 52771) isolated from haemodialysis water were characterized taxonomically, together with five strains isolated from industrial waters (CCUG 52428, CCUG 52507, CCUG 52575T, CCUG 52590 and CCUG 52631). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the class Betaproteobacteria and were related to the genus Pelomonas, with 16S rRNA gene sequence similarities higher than 99 % with the only species of the genus, Pelomonas saccharophila and to Pseudomonas sp. DSM 2583. The type strains of Mitsuaria chitosanitabida and Roseateles depolymerans were their closest neighbours (97.9 and 97.3 % 16S rRNA gene sequence similarity, respectively). Phylogenetic analysis was also performed for the internally transcribed spacer region and for three genes [hoxG (hydrogenase), cbbL/cbbM (Rubisco) and nifH (nitrogenase)] relevant for the metabolism of the genus Pelomonas. DNA–DNA hybridization, major fatty acid composition and phenotypical analyses were carried out, which included the type strain of Pelomonas saccharophila obtained from different culture collections (ATCC 15946T, CCUG 32988T, DSM 654T, IAM 14368T and LMG 2256T), as well as M. chitosanitabida IAM 14711T and R. depolymerans CCUG 52219T. Results of DNA–DNA hybridization, physiological and biochemical tests supported the conclusion that strains CCUG 52769, CCUG 52770 and CCUG 52771 represent a homogeneous phylogenetic and genomic group, including strain DSM 2583, clearly differentiated from the industrial water isolates and from the Pelomonas saccharophila type strain. On the basis of phenotypic and genotypic characteristics, these strains belong to two novel species within the genus Pelomonas, for which the names Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are proposed. The type strains of Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are CCUG 52769T (=CECT 7234T) and CCUG 52575T (=CECT 7233T), respectively.


2010 ◽  
Vol 60 (4) ◽  
pp. 854-860 ◽  
Author(s):  
C.-C. Young ◽  
H.-J. Busse ◽  
S. Langer ◽  
Jiunn-Nan Chu ◽  
P. Schumann ◽  
...  

Three Gram-positive, rod-shaped bacteria (strains CC-SBCK-209T, CC-12309T and CC-5209T) were isolated from the stalk of the edible mushroom Agaricus blazei grown in the laboratory. 16S rRNA gene sequence analysis indicated that all three isolates clearly belonged to the genus Microbacterium. Strains CC-SBCK-209T and CC-12309T were most related closely to the type strain of Microbacterium halotolerans (95.9 and 96.1 %16S rRNA gene sequence similarity, respectively). These two novel strains shared 97.9 % 16S rRNA gene sequence similarity. Levels of similarity to the type strains of all other recognized Microbacterium species were lower than 95.5 %. The third strain (CC-5209T) showed the highest 16S rRNA gene sequence similarity to the type strain of Microbacterium resistens (97.6 %); levels of similarity to the type strains of all other recognized Microbacterium species were lower than 96 %. The quinone systems of strains CC-SBCK-209T, CC-12309T and CC-5209T consisted of MK-11/MK-12, MK-11/MK-10 and MK-13 as major compounds, respectively. All three strains contained ornithine in their peptidoglycan. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The polyamine pattern consisted of spermidine and spermine as predominant components. Fatty acid profiles (anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major components) supported the affiliation of all three strains to the genus Microbacterium. The results of physiological and biochemical tests and DNA–DNA hybridization experiments allowed the clear phenotypic and genotypic differentiation of strains CC-SBCK-209T and CC-12309T from M. halotolerans and other closely related Microbacterium species. Strain CC-5209T could be differentiated clearly from M. resistens both genotypically and phenotypically. Based on these data, the novel strains are considered to represent three novel species of the genus Microbacterium. The names proposed for these organisms are Microbacterium agarici sp. nov. [type strain CC-SBCK-209T (=DSM 21798T=CCM 7686T)], Microbacterium humi sp. nov. [type strain CC-12309T (=DSM 21799T=CCM 7687T)] and Microbacterium pseudoresistens sp. nov. [type strain CC-5209T (=DSM 22185T=CCM 7688T)].


Sign in / Sign up

Export Citation Format

Share Document