scholarly journals Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water

2007 ◽  
Vol 57 (11) ◽  
pp. 2629-2635 ◽  
Author(s):  
Margarita Gomila ◽  
Botho Bowien ◽  
Enevold Falsen ◽  
Edward R. B. Moore ◽  
Jorge Lalucat

Three Gram-negative, rod-shaped, non-spore-forming bacteria (strains CCUG 52769T, CCUG 52770 and CCUG 52771) isolated from haemodialysis water were characterized taxonomically, together with five strains isolated from industrial waters (CCUG 52428, CCUG 52507, CCUG 52575T, CCUG 52590 and CCUG 52631). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the class Betaproteobacteria and were related to the genus Pelomonas, with 16S rRNA gene sequence similarities higher than 99 % with the only species of the genus, Pelomonas saccharophila and to Pseudomonas sp. DSM 2583. The type strains of Mitsuaria chitosanitabida and Roseateles depolymerans were their closest neighbours (97.9 and 97.3 % 16S rRNA gene sequence similarity, respectively). Phylogenetic analysis was also performed for the internally transcribed spacer region and for three genes [hoxG (hydrogenase), cbbL/cbbM (Rubisco) and nifH (nitrogenase)] relevant for the metabolism of the genus Pelomonas. DNA–DNA hybridization, major fatty acid composition and phenotypical analyses were carried out, which included the type strain of Pelomonas saccharophila obtained from different culture collections (ATCC 15946T, CCUG 32988T, DSM 654T, IAM 14368T and LMG 2256T), as well as M. chitosanitabida IAM 14711T and R. depolymerans CCUG 52219T. Results of DNA–DNA hybridization, physiological and biochemical tests supported the conclusion that strains CCUG 52769, CCUG 52770 and CCUG 52771 represent a homogeneous phylogenetic and genomic group, including strain DSM 2583, clearly differentiated from the industrial water isolates and from the Pelomonas saccharophila type strain. On the basis of phenotypic and genotypic characteristics, these strains belong to two novel species within the genus Pelomonas, for which the names Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are proposed. The type strains of Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are CCUG 52769T (=CECT 7234T) and CCUG 52575T (=CECT 7233T), respectively.

2007 ◽  
Vol 57 (9) ◽  
pp. 1966-1969 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, rod-shaped bacterium, IG8T, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8T represented a separate lineage within the genus Loktanella; the highest 16S rRNA gene sequence similarity values were found with the type strains of Loktanella salsilacus (98.6 %) and Loktanella fryxellensis (98.4 %). DNA–DNA hybridization values between strain IG8T and the type strains of L. salsilacus (27.9–36.1 %) and L. fryxellensis (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA G+C content of strain IG8T was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, Loktanella atrilutea sp. nov. The type strain is IG8T (=IAM 15450T=NCIMB 14280T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2724-2728 ◽  
Author(s):  
Qiu-Xiang Yan ◽  
Yong-Xia Wang ◽  
Shun-Peng Li ◽  
Wen-Jun Li ◽  
Qing Hong

A Gram-staining-negative, catalase-positive, carbaryl-degrading, non-spore-forming, non-motile, rod-shaped bacterium, designated strain X23T, was isolated from a wastewater treatment system. Phylogenetic analysis based on 16S rRNA gene sequence indicated that the strain belongs to the genus Sphingobium. The highest 16S rRNA gene sequence similarity observed for the isolate was 96.6 % with the type strain of Sphingobium amiense. Chemotaxonomic data [major ubiquinone: Q-10; major polar lipids: diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, sphingoglycolipid, phosphatidylethanolamine and unknown aminolipids and phospholipids; major fatty acids: summed feature 7 (C18 : 1 ω7c, C18 : 1 ω9t and/or C18 : 1 ω12t), C16 : 1 ω5c, C14 : 0 2-OH and C16 : 0 2-OH] as well as the inability to reduce nitrate and the presence of spermidine as the major polyamine supported the affiliation of the strain to the genus Sphingobium. Based on the phylogenetic analysis, whole-cell fatty acid composition and biochemical characteristics, the strain could be separated from all recognized species of the genus Sphingobium. Strain X23T should be classified as a novel species of the genus Sphingobium, for which the name Sphingobium qiguonii sp. nov. is proposed, with strain X23T (=CCTCC AB 208221T =DSM 21541T) as the type strain.


2011 ◽  
Vol 61 (4) ◽  
pp. 767-771 ◽  
Author(s):  
Hao-Jie Jin ◽  
Jing Lv ◽  
San-Feng Chen

A nitrogen-fixing bacterium, designated strain S27T, was isolated from rhizosphere soil of Sophora japonica. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain S27T is a member of the genus Paenibacillus. High levels of 16S rRNA gene sequence similarity were found between strain S27T and Paenibacillus durus DSM 1735T (97.3 %), Paenibacillus sabinae DSM 17841T (96.9 %), Paenibacillus forsythiae DSM 17842T (96.7 %) and Paenibacillus zanthoxyli DSM 18202T (96.6 %). However, DNA–DNA hybridization values between strain S27T and the four type strains were 37.64 %, 23.12 %, 25.6 % and 34.99 %, respectively. Levels of 16S rRNA gene sequence similarity between strain S27T and the type strains of other recognized members of the genus Paenibacillus were below 96.5 %. The DNA G+C content of strain S27T was 46.0 mol%. The major fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. The major isoprenoid quinone was MK-7. On the basis of its phenotypic characteristics and DNA–DNA hybridization results, strain S27T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sophorae sp. nov. is proposed. The type strain is S27T ( = CGMCC 1.10238T  = DSM 23020T).


2010 ◽  
Vol 60 (4) ◽  
pp. 854-860 ◽  
Author(s):  
C.-C. Young ◽  
H.-J. Busse ◽  
S. Langer ◽  
Jiunn-Nan Chu ◽  
P. Schumann ◽  
...  

Three Gram-positive, rod-shaped bacteria (strains CC-SBCK-209T, CC-12309T and CC-5209T) were isolated from the stalk of the edible mushroom Agaricus blazei grown in the laboratory. 16S rRNA gene sequence analysis indicated that all three isolates clearly belonged to the genus Microbacterium. Strains CC-SBCK-209T and CC-12309T were most related closely to the type strain of Microbacterium halotolerans (95.9 and 96.1 %16S rRNA gene sequence similarity, respectively). These two novel strains shared 97.9 % 16S rRNA gene sequence similarity. Levels of similarity to the type strains of all other recognized Microbacterium species were lower than 95.5 %. The third strain (CC-5209T) showed the highest 16S rRNA gene sequence similarity to the type strain of Microbacterium resistens (97.6 %); levels of similarity to the type strains of all other recognized Microbacterium species were lower than 96 %. The quinone systems of strains CC-SBCK-209T, CC-12309T and CC-5209T consisted of MK-11/MK-12, MK-11/MK-10 and MK-13 as major compounds, respectively. All three strains contained ornithine in their peptidoglycan. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The polyamine pattern consisted of spermidine and spermine as predominant components. Fatty acid profiles (anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major components) supported the affiliation of all three strains to the genus Microbacterium. The results of physiological and biochemical tests and DNA–DNA hybridization experiments allowed the clear phenotypic and genotypic differentiation of strains CC-SBCK-209T and CC-12309T from M. halotolerans and other closely related Microbacterium species. Strain CC-5209T could be differentiated clearly from M. resistens both genotypically and phenotypically. Based on these data, the novel strains are considered to represent three novel species of the genus Microbacterium. The names proposed for these organisms are Microbacterium agarici sp. nov. [type strain CC-SBCK-209T (=DSM 21798T=CCM 7686T)], Microbacterium humi sp. nov. [type strain CC-12309T (=DSM 21799T=CCM 7687T)] and Microbacterium pseudoresistens sp. nov. [type strain CC-5209T (=DSM 22185T=CCM 7688T)].


2005 ◽  
Vol 55 (6) ◽  
pp. 2333-2337 ◽  
Author(s):  
Virginia Gallego ◽  
Maria Teresa García ◽  
Antonio Ventosa

Three pink-pigmented facultatively methylotrophic bacteria were isolated from drinking water. These strains (designated AR24T, AR25 and GR32) have been characterized on the basis of phenotypic traits, 16S rRNA gene sequence analysis and DNA–DNA hybridization. According to the results of these analyses, the three strains belong to the genus Methylobacterium. Analysis of 16S rRNA gene sequences revealed that the three isolates constituted a single phylogenetic group. The level of 16S rRNA gene sequence similarities with respect to the type strains of the genus Methylobacterium were less than 96·5 %, except for the type strain of Methylobacterium nodulans (98·1 %). The G+C content of their DNA ranged from 69·0 to 69·7 mol%. DNA–DNA hybridization values confirmed that they constitute a novel species for which we propose the name Methylobacterium isbiliense sp. nov. The type strain is AR24T (=CECT 7068T=CCM 7304T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2592-2595 ◽  
Author(s):  
De-Chao Zhang ◽  
Franz Schinner ◽  
Rosa Margesin

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated BZ42T, was isolated from the soil of an industrial site. Strain BZ42T was able to grow at 5–25 °C. The major fatty acids were iso-C15 : 0 (46.2 %), C16 : 1 ω7c and/or iso-C15 : 0 2-OH (23.2 %) and iso-C17 : 0 3-OH (9.1 %). The predominant menaquinone was MK-7. The genomic DNA G+C content was 36.5 mol% (HPLC). 16S rRNA gene sequence phylogenetic analysis revealed that strain BZ42T was a member of the genus Pedobacter, family Sphingobacteriaceae, and 16S rRNA gene sequence similarities between strain BZ42T and the type strains of species of the genus Pedobacter with validly published names were 90.4–93.2 %. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain BZ42T was considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter bauzanensis sp. nov. is proposed. The type strain is BZ42T (=DSM 22554T =CGMCC 1.10187T =CIP 110134T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2810-2813 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Young-Ah Jeon ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial isolates from ginseng fields in Korea, strains GR17-7T and GP18-1T, were characterized using a polyphasic approach. Phylogenetic analysis of their 16S rRNA gene sequences revealed a clear affiliation with the Gammaproteobacteria, and showed that the closest phylogenetic relationships were with members of the genus Rhodanobacter. The 16S rRNA gene sequence similarity between strains GR17-7T and GP18-1T was 97.2 %. Both strains showed 16S rRNA gene sequence similarities of 95.2–96.9 % to type strains of recognized Rhodanobacter species. The G+C contents of the DNA of strains GR17-7T and GP18-1T were 61.0 and 62.5 mol%, respectively. According to the DNA–DNA hydridization tests, the hybridization value between strains GR17-7T and GP18-1T was 34 %. Strains GR17-7T and GP18-1T showed less than 32 % DNA–DNA relatedness with Rhodanobacter fulvus KCTC 12098T and Rhodanobacter spathiphylli LMG 23181T. Strains GR17-7T and GP18-1T were aerobic, Gram-negative, rod-shaped, and catalase- and oxidase-positive. Major fatty acids of both strains were iso-C17 : 1 ω9c and iso-C16 : 0. Based on the data presented, two novel Rhodanobacter species are proposed, with the names Rhodanobacter ginsengisoli sp. nov. (type strain GR17-7T=KACC 11762T=DSM 18993T) and Rhodanobacter terrae sp. nov. (type strain GP18-1T=KACC 11761T=DSM 19241T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1999-2005 ◽  
Author(s):  
Taishi Tsubouchi ◽  
Kozue Mori ◽  
Norio Miyamoto ◽  
Yoshihiro Fujiwara ◽  
Masaru Kawato ◽  
...  

A novel Gram-positive-staining, strictly aerobic and heterotrophic bacterium, designated strain LL-002T, was isolated from organics- and methane-rich seafloor sediment at a depth of 100 m in Kagoshima Bay, Kagoshima, Japan. Colonies were lustreless and translucent white in colour. The temperature, pH and salt concentration ranges for growth were 10–30 °C, pH 6.0–6.5 and 0–1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain LL-002T belongs to the genus Aneurinibacillus of the family Paenibacillaceae. 16S rRNA gene sequence similarities between strain LL-002T and the type strains of species of the genus Aneurinibacillus were 92.8–95.7 %; the highest sequence identity was with the type strain of Aneurinibacillus migulanus. The DNA G+C content of strain LL-002T was 46.2 mol%. MK-7 was the predominant menaquinone. The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0, and the cell-wall peptidoglycan contained meso-diaminopimelic acid and glutamic acid, glycine and alanine in addition to muramic acid and glucosamine. The peptidoglycan type was A1γ. In DNA–DNA hybridization assays between strain LL-002T and the type strains of the other species of the genus Aneurinibacillus, the level of hybridization was 6.3–30.1 %. On the basis of its biological features and the 16S rRNA gene sequence comparison presented here, strain LL-002T is considered to represent a novel species of the genus Aneurinibacillus, for which the name Aneurinibacillus tyrosinisolvens sp. nov. is proposed; the type strain is LL-002T ( = NBRC 110097T = CECT 8536T).


2007 ◽  
Vol 57 (5) ◽  
pp. 932-935 ◽  
Author(s):  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana ◽  
J. F. Imhoff

A pink-pigmented, phototrophic, purple nonsulfur bacterium, strain JA173T, was isolated in pure culture from a saltern in Gokarna, India, in a medium containing 2 % (w/v) NaCl. Strain JA173T was a non-motile Gram-negative rod that multiplied by budding. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JA173T clusters with the class Alphaproteobacteria; highest sequence similarity (98 %) was to the type strain of Rhodobium orientis and 94 % similarity was observed to the 16S rRNA gene sequence of the type strain of Rhodobium marinum. However, DNA–DNA hybridization with R. orientis DSM 11290T revealed a relatedness value of only 35.1 % with strain JA173T. Strain JA173T contained lamellar internal membranes, bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Strain JA173T had an obligate requirement for NaCl (optimum growth at 2–6 %, w/v) and grew photoheterotrophically with a number of organic compounds as carbon source or electron donor. Photoautotrophic, chemoautotrophic and fermentative growth could not be demonstrated. Yeast extract was required for growth. Based on 16S rRNA gene sequence analysis, DNA–DNA hybridization data and morphological and physiological characteristics, strain JA173T is sufficiently different from other species of the genus Rhodobium to be recognized as a representative of a novel species, Rhodobium gokarnense sp. nov. The type strain is JA173T (=ATCC BAA-1215T=DSM 17935T=JCM 13532T).


2010 ◽  
Vol 60 (2) ◽  
pp. 402-407 ◽  
Author(s):  
Carlos Pires ◽  
Maria F. Carvalho ◽  
Paolo De Marco ◽  
Naresh Magan ◽  
Paula M. L. Castro

Two Gram-staining-negative bacterial strains, designated 3A10T and ECP37T, were isolated from sediment samples collected from an industrially contaminated site in northern Portugal. These two organisms were rod-shaped, non-motile, aerobic, catalase- and oxidase-positive and formed yellow colonies. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The G+C content of the DNA of strains 3A10T and ECP37T was 43 and 34 mol%, respectively. The major isoprenoid quinone of the two strains was MK-6. 16S rRNA gene sequence analysis revealed that strains 3A10T and ECP37T were members of the family Flavobacteriaceae and were related phylogenetically to the genus Chryseobacterium. Strain 3A10T showed 16S rRNA gene sequence similarity values of 97.2 and 96.6 % to the type strains of Chryseobacterium antarcticum and Chryseobacterium jeonii, respectively; strain ECP37T showed 97.3 % similarity to the type strain of Chryseobacterium marinum. DNA–DNA hybridization experiments revealed levels of genomic relatedness of <70 % between strains 3A10T and ECP37T and between these two strains and the type strains of C. marinum, C. antarcticum and C. jeonii, justifying their classification as representing two novel species of the genus Chryseobacterium. The names proposed for these organisms are Chryseobacterium palustre sp. nov. (type strain 3A10T =LMG 24685T =NBRC 104928T) and Chryseobacterium humi sp. nov. (type strain ECP37T =LMG 24684T =NBRC 104927T).


Sign in / Sign up

Export Citation Format

Share Document