scholarly journals Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals

2004 ◽  
Vol 54 (2) ◽  
pp. 623-627 ◽  
Author(s):  
Asuka Hirai ◽  
Rui Kano ◽  
Koichi Makimura ◽  
Eduardo Robson Duarte ◽  
Júnia Soares Hamdan ◽  
...  

Five isolates of a novel species of the yeast genus Malassezia were isolated from animals in Japan and Brazil. Phylogenetic trees based on the D1/D2 domains of the large-subunit (26S) rDNA sequences and nucleotide sequences of the internal transcribed spacer 1 region showed that the isolates were conspecific and belonged to the genus Malassezia. They were related closely to Malassezia dermatis and Malassezia sympodialis, but were clearly distinct from these two species and the other six species of Malassezia that have been reported, indicating that they should be classified as a novel species, Malassezia nana sp. nov. Morphologically and physiologically, M. nana resembles M. dermatis and M. sympodialis, but can be distinguished from these species by its inability to use Cremophor EL (Sigma) as the sole lipid source and to hydrolyse aesculin. The type strain of M. nana is NUSV 1003T (=CBS 9557T=JCM 12085T).

2004 ◽  
Vol 54 (3) ◽  
pp. 975-986 ◽  
Author(s):  
Wouter J. Middelhoven ◽  
Gloria Scorzetti ◽  
Jack W. Fell

Phylogenetic trees of the anamorphic basidiomycetous yeast genus Trichosporon Behrend, based on molecular sequence analysis of the internal transcribed spacer region and the D1/D2 region of the large subunit of ribosomal (26S) DNA, are presented. This study includes three novel species from soils, Trichosporon vadense sp. nov. (type strain, CBS 8901T), Trichosporon smithiae sp. nov. (type strain, CBS 8370T) and Trichosporon gamsii sp. nov. (type strain, CBS 8245T), one novel species from an insect, Trichosporon scarabaeorum sp. nov. (type strain, CBS 5601T) and one species of unknown origin, Trichosporon dehoogii sp. nov. (type strain, CBS 8686T). The phylogenetic positions and physiological characteristics that distinguish the new taxa from related species, based partly on growth tests that are not traditionally used in yeast taxonomy (uric acid, ethylamine, l-4-hydroxyproline, tyramine and l-phenylalanine as sources of carbon and nitrogen, and polygalacturonate, quinate, 4-ethylphenol, phloroglucinol, 2,3-dihydroxybenzoate and orcinol as sole carbon sources), are discussed. Assimilation of l-rhamnose and erythritol and maximum growth temperature were also used to delineate species.


2011 ◽  
Vol 61 (9) ◽  
pp. 2320-2327 ◽  
Author(s):  
Carolina H. Pohl ◽  
Martha S. Smit ◽  
Jacobus Albertyn

Recent rDNA sequencing of 25 isolates from a previous study, during which limonene-utilizing yeasts were isolated from monoterpene-rich environments by using 1,4-disubstituted cyclohexanes as sole carbon sources, led to the identification of four hitherto unknown Rhodotorula species. Analyses of the 26S rDNA D1/D2 region as well as the internal transcribed spacer (ITS) domain indicated that two isolates (CBS 8499T and CBS 10736) were identical and were closely related to Rhodotorula cycloclastica, a previously described limonene-utilizing yeast. These novel isolates differed from known yeast species and could be distinguished from R. cycloclastica by standard physiological tests. The other three isolates represent three novel Rhodotorula species, closely related to Sporobolomyces magnisporus. These three species could also be distinguished from other Rhodotorula species by standard physiological tests. Based on these results, we suggest that the new isolates represent novel species, for which the names Rhodotorula eucalyptica sp. nov. (type strain CBS 8499T  = NRRL Y-48408T), Rhodotorula pini sp. nov. (type strain CBS 10735T  = NRRL Y-48410T), Rhodotorula bloemfonteinensis sp. nov. (type strain CBS 8598T  = NRRL Y-48407T) and Rhodotorula orientis sp. nov. (type strain CBS 8594T  = NRRL Y-48719T) are proposed. R. eucalyptica and R. pini can also utilize limonene.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1725-1727 ◽  
Author(s):  
Paula B. Morais ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Six strains representing a novel yeast species belonging to the genus Saturnispora were isolated from two species of the Drosophila fasciola subgroup (Drosophila repleta group) in an Atlantic rainforest site in Rio de Janeiro State, Brazil. Four strains were isolated from crops and one from external parts of Drosophila cardinae. The other strain was isolated from external parts of Drosophila fascioloides. Analysis of the D1/D2 large-subunit rDNA sequences indicated that the novel species is closely related to Saturnispora dispora. The name Saturnispora hagleri sp. nov. is proposed to accommodate these strains. The type strain is UFMG-55T (=CBS 10007T=NRRL Y-27828T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1877-1882 ◽  
Author(s):  
Qi-Ming Wang ◽  
Feng-Yan Bai ◽  
Hui-Zhong Lu ◽  
Jian-Hua Jia ◽  
Masako Takashima

Among yeasts isolated from plant leaves collected in different regions of China that form whitish or yellowish colonies and symmetrical ballistoconidia, four strains were shown to represent three novel Bullera species by conventional and molecular taxonomic characterization. The novel species are described as Bullera cylindrica sp. nov. (type strain CB 169T=AS 2.2308T=CBS 9744T), Bullera hubeiensis sp. nov. (type strain HX 19.3T=AS 2.2466T=CBS 9747T) and Bullera nakasei sp. nov. (type strain HX 15.5T=AS 2.2435T=CBS 9746T). These three species, and another eight previously described Bullera species represented by Bullera mrakii, formed a strongly supported distinct clade among the hymenomycetous yeasts in each of the phylogenetic trees drawn from the 26S rDNA D1/D2 domain and the internal transcribed spacer region sequences.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3115-3123 ◽  
Author(s):  
Neža Čadež ◽  
Dénes Dlauchy ◽  
Peter Raspor ◽  
Gábor Péter

Nine methanol-assimilating yeast strains isolated from olive oil sediments in Slovenia, extra virgin olive oil from Italy and rotten wood collected in Hungary were found to form three genetically separated groups, distinct from the currently recognized yeast species. Sequence analysis from genes of the small subunit (SSU) rRNA, internal transcribed spacer region/5.8S rRNA, large subunit (LSU) rRNA D1/D2 domains and translational elongation factor-1α (EF-1α) revealed that the three closely related groups represent three different undescribed yeast species. Sequence analysis of the LSU rRNA gene D1/D2 domains placed the novel species in the Ogataea clade. The three novel species are designated as Ogataea kolombanensis sp. nov. (type strain: ZIM 2322T = CBS 12778T = NRRL Y-63657T), Ogataea histrianica sp. nov. (type strain: ZIM 2463T = CBS 12779T = NRRL Y-63658T) and Ogataea deakii sp. nov. (type strain: NCAIM Y.01896T = CBS 12735T = NRRL Y-63656T).


2005 ◽  
Vol 55 (2) ◽  
pp. 973-976 ◽  
Author(s):  
Cletus P. Kurtzman

The new methanol-assimilating yeast species Komagataella phaffii Kurtzman sp. nov. (type strain NRRL Y-7556T=CBS 2612T) is described. Of the four known strains of this species, two were isolated from black oak trees in California, USA, one from an Emory oak in Arizona, USA, and one from an unidentified source in Mexico. The species forms hat-shaped ascospores in deliquescent asci and appears to be homothallic. Analysis of nucleotide sequences from domains D1/D2 of large-subunit (26S) rDNA separates the new species from Komagataella pastoris, the type species of the genus, and from Pichia pseudopastoris, which is here renamed Komagataella pseudopastoris (Dlauchy, Tornai-Lehoczki, Fülöp & Péter) Kurtzman comb. nov. (type strain NRRL Y-27603T=CBS 9187T=NCAIM Y 01541T). On the basis of D1/D2 26S rDNA sequence analysis, the three species now assigned to the genus Komagataella represent a clade that is phylogenetically isolated from other ascomycetous yeast genera.


2011 ◽  
Vol 61 (2) ◽  
pp. 454-461 ◽  
Author(s):  
Somjit Am-In ◽  
Savitree Limtong ◽  
Wichien Yongmanitchai ◽  
Sasitorn Jindamorakot

Five strains (RV5T, RV140, R31T, RS17 and RS28T) representing three novel anamorphic ascomycetous yeast species were isolated by membrane filtration from estuarine waters collected from a mangrove forest in Laem Son National Park, Ranong Province, Thailand, on different occasions. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and the internal transcribed spacer region and phylogenetic analysis, three strains were found to represent two novel Candida species. Two strains (RV5T and RV140) represented a single novel species, for which the name Candida laemsonensis sp. nov. is proposed. The type strain is RV5T (=BCC 35154T =NBRC 105873T =CBS 11419T). Strain R31T was assigned to a novel species that was named Candida andamanensis sp. nov. (type strain R31T =BCC 25965T =NBRC 103862T =CBS 10859T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and phylogenetic analysis, strains RS17 and RS28T represented another novel species of Candida, for which the name Candida ranongensis sp. nov. is proposed. The type strain is RS28T (=BCC 25964T =NBRC 103861T =CBS 10861T).


Sign in / Sign up

Export Citation Format

Share Document