Kordia jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Kordia

2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 657-662 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-staining-negative, aerobic, non-spore-forming, non-flagellated, non-gliding and rod-shaped bacterial strain, SSK3-3T, was isolated from the zone where the ocean and a freshwater spring meet at Jeju island, South Korea. Strain SSK3-3T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain SSK3-3T clustered with the type strains of species of the genus Kordia , with which it exhibited 96.5–97.2 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of other recognized species were less than 92.2 %. Strain SSK3-3T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain SSK3-3T were phosphatidylethanolamine, one unidentified lipid and one unidentified glycolipid. The DNA G+C content of strain SSK3-3T was 34.9 mol% and the mean DNA–DNA relatedness with Kordia periserrulae KACC 14311T was 12 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SSK3-3T is separate from other species of the genus Kordia . On the basis of the data presented, strain SSK3-3T is considered to represent a novel species of the genus Kordia , for which the name Kordia jejudonensis sp. nov. is proposed. The type strain is SSK3-3T ( = KCTC 32426T = CECT 8368T). An emended description of the genus Kordia is also provided.

2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1684-1689 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, coccoid-, oval- or rod-shaped strain, designated M-M23T, was isolated from seashore sediment at Geoje island, South Korea. Strain M-M23T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M23T clustered with the type strains of the two species of the genus Hirschia , with which it exhibited 97.6–98.1 % 16S rRNA gene sequence similarity. Sequence similarity with the type strains of other recognized species was <90.8 %. Strain M-M23T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain M-M23T were phosphatidylglycerol and two unidentified lipids. The DNA G+C content of strain M-M23T was 45.4 mol%. DNA–DNA relatedness between the isolate and Hirschia baltica DSM 5838T and Hirschia maritima JCM 14974T was 22±7.2 and 14±5.6 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain M-M23T is separate from the other described members of the genus Hirschia . On the basis of the data presented, strain M-M23T is considered to represent a novel species of the genus Hirschia , for which the name Hirschia litorea sp. nov. is proposed. The type strain is M-M23T ( = KCTC 32081T  = CCUG 62793T). An emended description of the genus Hirschia is also provided.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1793-1799 ◽  
Author(s):  
Chul-Hyung Kang ◽  
Soo-Young Lee ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium, designated DPS-8T, was isolated from coastal sediment of Geoje island in the South Sea, South Korea, and subjected to a polyphasic study. Strain DPS-8T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain DPS-8T joined the clade comprising the type strains of Winogradskyella species with a high bootstrap resampling value of 93.5 %. Phylogenetic trees constructed using maximum-likelihood and maximum-parsimony algorithms revealed that strain DPS-8T belonged to the genus Winogradskyella . Strain DPS-8T exhibited 94.1–96.5 % 16S rRNA gene sequence similarity to the type strains of species of the genus Winogradskyella . Strain DPS-8T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 1ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The major polar lipids of strain DPS-8T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain DPS-8T was 34.7 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, revealed that strain DPS-8T is separate from recognized species of the genus Winogradskyella . On the basis of the data presented, strain DPS-8T is considered to represent a novel species of the genus Winogradskyella , for which the name Winogradskyella litorisediminis sp. nov. is proposed. The type strain is DPS-8T ( = KCTC 32110T = CCUG 62215T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1329-1334 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, motile-by-gliding rod, designated SSK2-3T, was isolated from the junction between seawater and a freshwater spring at Jeju island, South Korea. Strain SSK2-3T grew optimally at 25–30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SSK2-3T clustered with type strains of species of the genus Mariniflexile , with which it exhibited 97.2–97.8 % 16S rRNA gene sequence similarity. Sequence similarity between the isolate and the other strains used in the phylogenetic analysis was <95.6 %. Strain SSK2-3T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G and C15 : 0 as the major fatty acids. The major polar lipids of strain SSK2-3T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain SSK2-3T was 32.4 mol%. DNA–DNA relatedness between the isolate and Mariniflexile gromovii KCTC 12570T, Mariniflexile fucanivorans DSM 18792T and Mariniflexile aquimaris HWR-17T was 19, 15 and 20 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SSK2-3T is separate from other members of the genus Mariniflexile . On the basis of the data presented, strain SSK2-3T is considered to represent a novel species of the genus Mariniflexile , for which the name Mariniflexile jejuense sp. nov. is proposed. The type strain is SSK2-3T ( = KCTC 23958T  = CCUG 62414T). An emended description of the genus Mariniflexile is given.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 588-593 ◽  
Author(s):  
Sooyeon Park ◽  
Ken-Chul Lee ◽  
Kyung Sook Bae ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated, motile by gliding and rod-shaped bacterial strain, RSSK-12T, was isolated from the zone where the ocean and a freshwater spring meet at Jeju island, South Korea. Strain RSSK-12T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RSSK-12T clustered with the type strains of two Vitellibacter species, with which it exhibited 94.8–96.9 % sequence similarity. Sequence similarities to the type strains of species of the genus Aequorivita and of other recognized species were 94.7–95.5 % and less than 91.9 %, respectively. Strain RSSK-12T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids of strain RSSK-12T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain RSSK-12T was 38.9 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, revealed that strain RSSK-12T is separate from other Vitellibacter species. On the basis of the data presented, strain RSSK-12T is considered to represent a novel species of the genus Vitellibacter , for which the name Vitellibacter soesokkakensis sp. nov. is proposed. The type strain is RSSK-12T ( = KCTC 32536T = CECT 8398T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4191-4197 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, coccoid- or short-rod-shaped and non-gliding bacterial strain, designated CDM-7T, was isolated from the zone where the ocean meets a freshwater spring at Jeju island, South Korea, and was subjected to a polyphasic taxonomic study. Strain CDM-7T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain CDM-7T falls within the clade comprising species of the genus Defluviimonas, clustering with the type strain of Defluviimonas aestuarii , with which it exhibited the highest 16S rRNA gene sequence similarity value (98.4 %). The 16S rRNA gene sequence similarity values between strain CDM-7T and the type strains of Defluviimonas denitrificans and Defluviimonas indica were 97.1 and 96.2 %, respectively. The genomic DNA G+C content was 66.8 mol% and the mean DNA–DNA relatedness values between strain CDM-7T and the type strains of D. aestuarii and D. denitrificans were 15.6±2.5 and 6.7±3.2 %, respectively. Strain CDM-7T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain CDM-7T is distinguishable from other species of the genus Defluviimonas . On the basis of the data presented, strain CDM-7T is considered to represent a novel species of the genus Defluviimonas , for which the name Defluviimonas aquaemixtae sp. nov. is proposed. The type strain is CDM-7T ( = KCTC 42108T = CECT 8626T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3276-3281 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Sung-Min Won ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and ovoid or rod-shaped bacterial strain, GJMS-35T, was isolated from seashore sand at Geoje Island, South Korea. Strain GJMS-35T grew optimally at 28–30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain GJMS-35T clustered with type strains of species of the genus Pseudoruegeria , with which it exhibited 96.97–98.42 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of other recognized species were less than 96.39 %. Strain GJMS-35T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain GJMS-35T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain GJMS-35T was 64.1 mol% and its mean DNA–DNA relatedness values with type strains of three species of the genus Pseudoruegeria were 11–21 %. Its differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain GJMS-35T is set apart from other species of the genus Pseudoruegeria . On the basis of the data presented, strain GJMS-35T is considered to represent a novel species of the genus Pseudoruegeria , for which the name Pseudoruegeria sabulilitoris sp. nov. is proposed. The type strain is GJMS-35T ( = KCTC 42111T = NBRC 110380T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 755-760 ◽  
Author(s):  
Dong-Heon Lee ◽  
Jae Seoun Hur ◽  
Hyung-Yeel Kahng

A strictly aerobic, Gram-stain-negative bacterium, designated strain No.6T, was isolated from a lichen (Cladonia sp.) collected in Geogeum Island, Korea, and its taxonomic status was established by a polyphasic study. Cells of strain No.6T were non-motile, catalase- and oxidase-positive, non-spore-forming rods. Growth was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.0–10.0 (optimum, pH 6.0–8.0) and with 0–3 % NaCl (optimum, 0–2 %). The predominant cellular fatty acids were summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 41.5 %), iso-C15 : 0 (26.7 %) and C16 : 0 (9.6 %), and menaquinone MK-7 was the only respiratory quinone. The G+C content of the genomic DNA of strain No.6T was 36.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain No.6T fell within the evolutionary group encompassed by the genus Sphingobacterium . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized Sphingobacterium species ranged from 92.1 to 99.1 %, the highest values being with Sphingobacterium siyangense SY1T (99.1 %) and Sphingobacterium multivorum IAM 14316T (98.5 %). DNA–DNA relatedness between strain No.6T and these two type strains were 32.0 and 5.7 %, respectively. The polar lipids found in strain No.6T were phosphatidylethanolamine, two unidentified phospholipids, three unidentified aminophospholipids, one glycolipid and four unidentified lipids. One unidentified sphingolipid was also found. On the basis of phenotypic and genotypic data, strain No.6T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium cladoniae sp. nov. is proposed. The type strain is No.6T ( = KCTC 22613T = JCM 16113T). An emended description of Sphingobacterium siyangense is also proposed.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 719-724 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-spore-forming, non-flagellated, rod-shaped bacterial strain, SSK2-1T, was isolated from the zone where the ocean and a freshwater spring meet at Jeju island, South Korea, and subjected to a polyphasic taxonomic study. Strain SSK2-1T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain SSK2-1T clustered with the type strains of two Octadecabacter species, showing 96.5–96.8 % 16S rRNA gene sequence similarity. Strain SSK2-1T and Octadecabacter arcticus DSM 13978T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the common major fatty acid. The polar lipid profile of strain SSK2-1T was similar to that of O. arcticus DSM 13978T by having phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid as the major components. The DNA G+C content of strain SSK2-1T was 60.1 mol%. Differential phenotypic properties, particularly temperature range for growth, oxidase activity and nitrate reduction, together with phylogenetic distinctiveness, revealed that strain SSK2-1T is separate from recognized species of the genus Octadecabacter . On the basis of the data presented, strain SSK2-1T is considered to represent a novel species of the genus Octadecabacter , for which the name Octadecabacter jejudonensis sp. nov. is proposed. The type strain is SSK2-1T ( = KCTC 32535T = CECT 8397T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2545-2550 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
Ji-Min Park ◽  
Dong-Gyun Kim ◽  
...  

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated RSS4-C1T, was isolated from a golden sea squirt (Halocynthia aurantium) collected from the East Sea, South Korea. The novel strain grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain RSS4-C1T fell within the clade comprising the type strains of species of the genus Litoreibacter . Strain RSS4-C1T exhibited the highest 16S rRNA gene sequence similarity (99.6 %) to the type strain of Litoreibacter albidus and sequence similarities of 96.5–98.5 % to type strains of other recognized species of the genus Litoreibacter . Strain RSS4-C1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and 11-methyl-C18 : 1ω7c as the major fatty acids. The major polar lipids of strain RSS4-C1T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain RSS4-C1T was 58.0 mol% and its DNA–DNA relatedness values with type strains of four species of the genus Litoreibacter were 21–34 %. The differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain RSS4-C1T is distinct from other species of the genus Litoreibacter . On the basis of the data presented, strain RSS4-C1T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter ascidiaceicola sp. nov. is proposed. The type strain is RSS4-C1T ( = KCTC 42050T = CECT 8539T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3810-3815 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated GJSW-31T, was isolated from seawater from the South Sea, South Korea. The novel strain grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain GJSW-31T clustered with the type strains of species of the genus Litoreibacter . Strain GJSW-31T exhibited 16S rRNA gene sequence similarity values of 95.2–98.5 % to the type strains of species of the genus Litoreibacter and sequence similarities of less than 96.18 % to type strains of the other species with validly published names. Strain GJSW-31T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain GJSW-31T were phosphatidylcholine, phosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain GJSW-31T was 62.5 mol% and its DNA–DNA relatedness values with the type strains of Litoreibacter albidus , Litoreibacter janthinus , Litoreibacter meonggei and Litoreibacter ascidiaceicola were 13–23 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain GJSW-31T is separate from other species of the genus Litoreibacter . On the basis of the data presented, strain GJSW-31T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter ponti sp. nov. is proposed. The type strain is GJSW-31T ( = KCTC 42114T = NBRC 110379T).


Sign in / Sign up

Export Citation Format

Share Document