scholarly journals Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1419-1427 ◽  
Author(s):  
Peter Kämpfer ◽  
Marie T. Poppel ◽  
Gottfried Wilharm ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
...  

Two yellow-pigmented bacterial strains (100T and C26T), showing 98.4 % 16S rRNA gene sequence similarity to each other and isolated from a chicken in Germany and as a contaminant from an agar plate of a rhizosphere sample in Alabama, were studied by using a polyphasic taxonomic approach. Cells of both isolates were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequences of the two organisms with the sequences of the type strains of the most closely related species of the genus Chryseobacterium showed the highest sequence similarities of strains 100T and C26T to the type strains of Chryseobacterium joostei (respectively 97.5 and 98.2 %), C. viscerum (96.6, 97.8 %), C. gleum (97.1, 97.7 %), C. arthrosphaerae (97.3%, 97.7 %), C. indologenes (97.2, 97.7 %), C. tructae (96.6, 97.6 %), C. jejuense (97.0, 97.6 %) and C. oncorhynchi (96.3, 97.5 %); 16S rRNA gene sequence similarities to members of all other species of the genus Chryseobacterium were below 97.5 %. The fatty acid profiles of both strains consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 1ω9c and iso-C17 : 0 3-OH, but also showed slight differences (absence or presence of C16 : 0 3-OH and iso-C15 : 1 F). DNA–DNA hybridizations between the two strains and between the novel strains and the type strains of C. joostei , C. indologenes , C. jejuense , C. tructae and C. viscerum resulted in relatedness values clearly below 70 %. These DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed that both strains 100T and C26T represent novel species, for which the names Chryseobacterium gallinarum sp. nov. (type strain 100T = LMG 27808T = CCM 8493T) and Chryseobacterium contaminans sp. nov. (type strain C26T = LMG 27810T = CCM 8492T) are proposed.

Author(s):  
Siren Hu ◽  
Kaiqin Li ◽  
Yinfeng Wang ◽  
Yihui Guo ◽  
Meiliang Zhou ◽  
...  

A novel genistein-producing actinobacterial strain, designated strain CRPJ-33T, was isolated from the healthy leaves of a medicinal plant Xanthium sibiricum collected from Hunan Province, PR China. 16S rRNA gene sequence analysis indicated strain CRPJ-33T belonged to the genus Streptomyces and had 99.7, 99.0, 98.9, 98.9, 98.8 and 98.7% sequence similarities to Streptomyces zhihengii YIM T102T, Streptomyces eurocidicus NRRL B-1676T, Streptomyces xanthochromogenes NRRL B-5410T, Streptomyces michiganensis NBRC 12797T, Streptomyces mauvecolor LMG 20100T and Streptomyces lavendofoliae NBRC 12882T, respectively. Phylogenetic analysis of 16S rRNA gene sequences showed that strain CRPJ-33T was most closely related to S. zhihengii YIM T102T. However, digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between them were much less than the recommended threshold values. Furthermore, differential comparisons of the phenotypic characteristics were enough to distinguish strain CRPJ-33T from S. zhihengii YIM T102T. Meanwhile, the ANI and dDDH values or MLSA distances between strain CRPJ-33T and other type strains, which exhibited ≥98.7 % 16S rRNA gene sequence similarities to strain CRPJ-33T, were far away from the recommended threshold values. Based on these results, it is thought that strain CRPJ-33T should represent a novel species of the genus Streptomyces , for which the name Streptomyces genisteinicus sp. nov. is proposed. The type strain is CRPJ-33T (=MCCC 1K04965T=JCM 34526T). In addition, the phenotypic, chemotaxonomic and genotypic characteristics, as well as phylogenetic information revealed that the type strains of S. xanthochromogenes and S. michiganensis should belong to same genomic species. Consequently, it is proposed that S. michiganensis is a heterotypic synonym of S. xanthochromogenes for which an emended description is given.


2020 ◽  
Vol 70 (4) ◽  
pp. 2485-2492 ◽  
Author(s):  
Yu Qin Li ◽  
Wen Li Tian ◽  
Chun Tao Gu

Three Gram-stain-positive bacterial strains, designated X0750T, X0278 and X0401, isolated from traditional yogurt in Tibet Autonomous Region, PR China, were characterized by a polyphasic approach, including sequence analyses of the 16S rRNA gene and three housekeeping genes (pheS, rpoA and recA), determination of average nucleotide identity (ANI) and average amino acid identity (AAI), in silico DNA–DNA hybridization (isDDH), fatty acid methyl ester (FAME) analysis and phenotypic characterization. Strain X0750T was phylogenetically related to the type strains of Weissella hellenica , Weissella bombi , Weissella paramesenteroides , Weissella jogaejeotgali , Weissella thailandensis , Weissella oryzae , Weissella cibaria and Weissella confusa , having 94.4–100 % 16S rRNA gene sequence similarities, 76.7–90.0 % pheS gene sequence similarities, 88.9–99.4 % rpoA gene sequence similarities and 77.6–92.8 % recA gene sequence similarities, respectively. ANI, isDDH and AAI values between strain X0750T and type strains of phylogenetically related species were less than 90.4, 40.9 and 92.8 % respectively, confirming that strain X0750T represents a novel species within the genus Weissella . Based upon the data obtained in the present study, a novel species, Weissella sagaensis sp. nov., is proposed and the type strain is X0750T(=NCIMB 15192T=CCM 8924T=LMG 31184T=CCTCC AB 2018403T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 1972-1981 ◽  
Author(s):  
Taishi Tsubouchi ◽  
Yasuhiro Shimane ◽  
Kozue Mori ◽  
Keiko Usui ◽  
Toshiki Hiraki ◽  
...  

A novel filamentous bacterium, designated strain JIR-001T, was isolated from hemipelagic sediment in deep seawater. This strain was non-motile, Gram-positive, aerobic, heterotrophic and thermophilic; colonies were of infinite form and ivory coloured with wrinkles between the centre and the edge of the colony on ISP2 medium. The isolate grew aerobically at 55–73 °C with the formation of aerial mycelia; spores were produced singly along the aerial mycelium. These morphological features show some similarities to those of the type strains of some species belonging to the family Thermoactinomycetaceae . Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain JIR-001T belongs to the family Thermoactinomycetaceae within the class Bacilli . Similarity levels between the 16S rRNA gene sequence of strain JIR-001T and those of the type strains of Thermoactinomycetaceae species were 85.5–93.5 %; highest sequence similarity was with Melghirimyces algeriensis NariEXT. In the DNA–DNA hybridization assays between strain JIR-001T and its phylogenetic neighbours the mean hybridization levels with Melghirimyces algeriensis NariEXT, Planifilum fimeticola H0165T, Planifilum fulgidum 500275T and Planifilum yunnanense LA5T were 5.3–7.5, 2.3–4.7, 2.1–4.8 and 2.5–4.9 %, respectively. The DNA G+C content of strain JIR-001T was 55.1 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0, iso-C16 : 0 and C16 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, glucolipid, phosphatidylserine, an amino-group containing phospholipid, an unknown phospholipid and two unknown lipids. The predominant menaquinone was MK-7 and the cell-wall peptidoglycan contained meso-diaminopimelic acid, glutamic acid and alanine. On the basis of phenotypic characteristics and 16S rRNA gene sequence comparisons, strain JIR-001T is considered to represent a novel species in a new genus of the family Thermoactinomycetaceae , for which the name Polycladomyces abyssicola gen. nov., sp. nov. is proposed. The type strain of Polycladomyces abyssicola is JIR-001T ( = JCM 18147T = CECT 8074T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5824-5831 ◽  
Author(s):  
Peter Kämpfer ◽  
S. P. Glaeser ◽  
John A. McInroy ◽  
Jia Xu ◽  
Hans-Jürgen Busse ◽  
...  

A Gram-staining-negative non endospore-forming strain, PXU-55T, was isolated from the rhizosphere of the switchgrass Panicum virgatum and studied in detail to determine its taxonomic position. The results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Flavobacterium . The isolate shared highest 16S rRNA gene sequence similarities with the type strains of Flavobacterium chungangense (98.78 %) and Flavobacterium chilense (98.64 %). The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values between the PXU-55T genome assembly and the ones of the most closely related type strains of species of the genus Flavobacterium were 87.3 and 31.9% ( Flavobacterium defluvii ), and 86.1 and 29.9% ( Flavobacterium johnsoniae ). Menaquinone MK-6 was the major respiratory quinone. As major polar lipids, phosphatidylethanolamine, an ornithine lipid and the unidentified polar lipids L2, L3 and L4 lacking a functional group were found. Moderate to minor amounts of another ornithine lipid, the unidentified lipid L1 and a glycolipid were present, as well. The major polyamine is sym-homospermidine. The fatty acid profiles contained major amounts of iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0, summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH) and various hydroxylated fatty acids in smaller amounts, among them iso C16:0 3-OH, C16:0 3-OH and C15:0 3-OH, which supported the classification of the isolate as a member of the genus Flavobacterium . Physiological and biochemical characterisation and ANI calculations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strain. For this reason, we propose that strain PXU-55T (=CIP 111646T=CCM 8914T) represents a novel species with the name Flavobacterium panici sp. nov.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 945-951 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, rod- or coccoid-shaped bacterial strain, designated HD-22T, belonging to the class Alphaproteobacteria , was isolated from a tidal flat sediment of the Yellow Sea, Korea, and was subjected to a polyphasic taxonomic study. Strain HD-22T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HD-22T fell within the clade comprising species of the genus Jannaschia , clustering with the type strains of Jannaschia helgolandensis , Jannaschia donghaensis and Jannaschia rubra , with which it exhibited highest 16S rRNA gene sequence similarity (97.6–98.2 %). Levels of 16S rRNA gene sequence similarity between strain HD-22T and the type strains of the other species of the genus Jannaschia were in the range 94.4–97.5 %. The DNA G+C content was 64.6 mol% and mean DNA–DNA relatedness values between strain HD-22T and the type strains of J. helgolandensis , J. donghaensis and J. rubra were 42.1, 40.1 and 27.0 %, respectively. Strain HD-22T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, demonstrated that strain HD-22T is distinguishable from recognized species of the genus Jannaschia . On the basis of the data presented, strain HD-22T is considered to represent a novel species of the genus Jannaschia , for which the name Jannaschia faecimaris sp. nov. is proposed. The type strain is HD-22T ( = KCTC 32179T = CCUG 63415T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4118-4123 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, designated D1-W3T, was isolated from tidal flat sediment of the South Sea, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain D1-W3T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2 % (w/v) NaCl. Neighbour-joining phylogenetic analyses based on 16S rRNA gene sequences revealed that strain D1-W3T fell within the clade comprising species of the genus Loktanella , clustering with the type strains of Loktanella tamlensis , Loktanella rosea and Loktanella maricola , with which it exhibited the highest 16S rRNA gene sequence similarity values (98.1–98.2 %). The 16S rRNA gene sequence similarity values between strain D1-W3T and the type strains of other species of the genus Loktanella were in the range 93.5–96.5 %. The DNA G+C content of strain D1-W3T was 58.1 mol% and the mean DNA–DNA hybridization values with L. tamlensis KCTC 12722T, L. rosea LMG 22534T and L. maricola DSW-18T were 13–25 %. Strain D1-W3T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, showed that strain D1-W3T could be differentiated from other species of the genus Loktanella . On the basis of the data presented, strain D1-W3T represents a novel species of the genus Loktanella , for which the name Loktanella sediminilitoris sp. nov. is proposed. The type strain is D1-W3T ( = KCTC 32383T = CECT 8284T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2383-2387 ◽  
Author(s):  
Huili Pang ◽  
Maki Kitahara ◽  
Zhongfang Tan ◽  
Yanping Wang ◽  
Guangyong Qin ◽  
...  

Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the dl-form of lactic acid. This strain exhibited more than 99.6 % 16S rRNA gene sequence similarity and greater than 82 % DNA–DNA reassociation with type strains of Lactobacillus kimchii , L. bobalius and L. paralimentarius . To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA–DNA relatedness were examined. The three type strains displayed different l-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius , sharing 99.5–99.9 % 16S rRNA gene sequence similarity, which was confirmed by the high DNA–DNA relatedness (≥82 %) between L. paralimentarius JCM 10415T, L. bobalius JCM 16180T and L. kimchii JCM 10707T. Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius .


2020 ◽  
Vol 70 (12) ◽  
pp. 6147-6154
Author(s):  
Peter Kämpfer ◽  
Rute Irgang ◽  
Stefanie P. Glaeser ◽  
Hans-Jürgen Busse ◽  
Alexis Criscuolo ◽  
...  

A Gram-staining-negative non endospore-forming strain, T13(2019)T was isolated from water samples from Atlantic salmon (Salmo salar) fry culture in Chile and studied in detail for its taxonomic position. The isolate shared highest 16S rRNA gene sequence similarities with the type strains of Flavobacterium chungangense (98.44 %) followed by Flavobacterium tructae and Flavobacterium spartansii (both 98.22 %). Menaquinone MK-6 was the predominant respiratory quinone in T13(2019)T. Major polar lipids were phosphatidylethanolamine, an ornithine lipid and the unidentified polar lipids L1, L3 and L4 lacking a functional group. The major polyamine was sym-homospermidine. The fatty acid profile contained major amounts of iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, C15 : 0, summed feature 3 (C16 : 1  ω7c and/or iso-C15 : 0 2-OH) and various hydroxylated fatty acids in smaller amounts, among them iso-C16 : 0 3-OH, and C15 : 0 3-OH, which supported the grouping of the isolate into the genus Flavobacterium . Physiological/biochemical characterisation and ANI calculations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation. In addition it became obvious, that the type strains of F. tructae and F. spartansii showed 100 % 16S rRNA gene sequence similarities and ANI values of 97.21%/ 97.59 % and DDH values of 80.40 % [77.5 and 83%]. These data indicate that F. tructae and F. spartansii belong to the same species and it is proposed that F. spartansii is a later heterotypic synonym of F. tructae . For strain T13(2019)T (=CIP 111411T=LMG 30298T=CCM 8798T) a new species with the name Flavobacterium salmonis sp. nov. is proposed.


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
Stefanie P. Glaeser ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, non-motile, non-spore-forming, coccus (strain Do 184T) was isolated from exhaust air of a turkey fattening plant on mannitol salt agar. The strain shared high 16S rRNA gene sequence similarity to the type strains of Jeotgalicoccus aerolatus (98.0%) followed by Jeotgalicoccus marinus (97.2%) and Jeotgalicoccus huakuii (97.1%). All other 16S rRNA gene sequence similarities to species of the genus Jeotgalicoccus were below 97%. The average nucleotide identities (ANI) between the Do 184T genome assembly and the ones of type strains of species of the genus Jeotgalicoccus were far below the 95% species delineation cutoff value, ranging from 79.47% ( J. marinus DSM 19772T) to 75.30% ( J. pinnipedialis CIP 107946T). The quinone system of Do 184T, the polar lipid profile, the polyamine pattern and the fatty acid profile were in congruence with those reported for other species of the genus Jeotgalicoccus and thus supported the affiliation of Do 184T to this genus. Do 184T represents a novel species, for which the name Jeotgalicoccus meleagridis sp. nov. is proposed, with the type strain Do 184T (=LMG 31100T=CCM 8918T=CIP 111649T). In addition, data on genome sequences of Jeotgalicoccus halophilus C1-52T =CGMCC 1.8911T=NBRC 105788T and Jeotgalicoccus aerolatus MPA-33T=CCM 7679T=CCUG 57953T=DSM 22420T=CIP 111750T indicate that both isolates represent the same species. Pairwise ANI between the genomes of these two strains lead to similarities of 98.98–99.05 %. These results indicate that these strains represent members of the same species. Due to priority of publication it is proposed that Jeotgalicoccus halophilus is reclassified as Jeotgalicoccus aerolatus .


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3841-3847 ◽  
Author(s):  
Peter Kämpfer ◽  
Stefanie Glaeser ◽  
Hans-Jürgen Busse ◽  
Tobias Eisenberg ◽  
Holger Scholz

A Gram-stain-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile bacterium (B1315T) was isolated from the placenta of a sheep with abortion. On the basis of 16S rRNA gene sequence analyses the strain was assigned to the Brucella – Ochrobactrum – Paenochrobactrum – Pseudochrobactrum group with 94.5–94.8 %, 94.3–96.1 %, 95.0–95.1 %, and 95.9–96.1 % sequence similarities to type strains of species of the four genera, respectively. Phylogenetic trees indicated a close relationship to the type strains of Ochrobactrum gallinifaecis and Ochrobactrum oryzae (95.9 and 96.1 % sequence similarity, respectively). Chemotaxonomic data confirmed the allocation of strain B1315T to the family Brucellaceae (quinone system: ubiquinone Q-10 and major fatty acids: C18 : 1ω7c and C19 : 0 cyclo ω8c). The polar lipid profile contained the major lipids diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and the unidentified but unique phospholipid PL7. The polyamine pattern of strain B1315T contained the major polyamines spermidine and putrescine. On the basis of the 16S rRNA gene and recA sequence phylogeny and chemotaxonomic data strain B1315T was clearly different from the genera Brucella , Ochrobactrum , Paenochrobactrum and Pseudochrobactrum . On the basis of these data we propose the novel genus Falsochrobactrum gen. nov. with the type species Falsochrobactrum ovis sp. nov. with the type strain B1315T ( = CCM 8460T = LMG 27356T.) The taxonomic allocation of O. gallinifaecis , which grouped inconsistently together with strain B1315T on the basis of 16S rRNA gene sequence data, but shows the chemotaxonomic features of the genus Ochrobactrum , remains to be clarified.


Sign in / Sign up

Export Citation Format

Share Document