scholarly journals Ascidiaceihabitans donghaensis gen. nov., sp. nov., isolated from the golden sea squirt Halocynthia aurantium

2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3970-3975 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
Chu Lee ◽  
Ja-Min Park ◽  
...  

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated RSS1-M3T, was isolated from a golden sea squirt (Halocynthia aurantium) collected from the East Sea, South Korea. Strain RSS1-M3T grew optimally at 30 °C, at pH 7.0–8.0 and in presence of 2.0 % (w/v) NaCl. Strain RSS1-M3T exhibited the highest 16S rRNA gene sequence similarity (96.55 %) to the type strain of Pelagicola litoralis . Neighbour-joining and maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences revealed that strain RSS1-M3T clustered with the type strains, or proposed type strains, of Planktotalea frisia , Pacificibacter maritimus , Roseovarius marinus and Halocynthiibacter namhaensis , showing sequence similarity of 94.88–96.32 %. Strain RSS1-M3T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids. The polar lipid profile of strain RSS1-M3T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified aminolipid and one unidentified lipid as major components, could be distinguished from those of the phylogenetically related genera. The DNA G+C content of strain RSS1-M3T was 55.8 mol%. On the basis of the phylogenetic, chemotaxonomic and phenotypic properties, strain RSS1-M3T is considered to represent a novel species of a new genus within the class Alphaproteobacteria , for which the name Ascidiaceihabitans donghaensis gen. nov., sp. nov. is proposed. The type strain is RSS1-M3T ( = KCTC 42118T = CECT 8599T).

2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3487-3493 ◽  
Author(s):  
Stefanie P. Glaeser ◽  
Harald Galatis ◽  
Karin Martin ◽  
Peter Kämpfer

Two Gram-negative, rod-shaped bacteria, strains E96T and E90T, were isolated from medicinal leeches (Hirudo verbana) and characterized by a polyphasic taxonomic approach. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence showed that the two strains shared 98.1 % sequence similarity and were affiliated with the genus Niabella within the phylum Bacteroidetes , with 94.4–97.6 % sequence similarity to type strains of species of the genus Niabella and highest sequence similarity to the type strain of Niabella aurantiaca (97.3 and 97.6 %, respectively). Niabella -related 16S rRNA gene sequences were recently detected in the bladders of Hirudo verbana; however, no cultured representatives were so far available. Genomic fingerprint analysis using repetitive element primed (rep)- and randomly amplified polymorphic DNA (RAPD)-PCRs and DNA–DNA hybridization experiments clearly showed that the strains were different from each other (DNA–DNA relatedness values of 39.1 %, reciprocal 28.0 %) and from the type strains of N. aurantiaca (<19.7 %) and Niabella tibetensis (<41.1 %). Chemotaxonomic analyses confirmed the affiliation to the genus Niabella . Both strains contained MK-7 as the predominant menaquinone. The major fatty acids of both strains were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), which is characteristic for the genus Niabella . Based on genotypic, chemotaxonomic and physiological characterization, we propose two novel species of the genus Niabella , Niabella hirudinis sp. nov., with strain E96T ( = DSM 25812T = CCM 8411T = LMG 26956T) as the type strain, and Niabella drilacis sp. nov., with strain E90T ( = DSM 25811T = CCM 8410T = LMG 26954T) as the type strain.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2545-2550 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
Ji-Min Park ◽  
Dong-Gyun Kim ◽  
...  

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated RSS4-C1T, was isolated from a golden sea squirt (Halocynthia aurantium) collected from the East Sea, South Korea. The novel strain grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain RSS4-C1T fell within the clade comprising the type strains of species of the genus Litoreibacter . Strain RSS4-C1T exhibited the highest 16S rRNA gene sequence similarity (99.6 %) to the type strain of Litoreibacter albidus and sequence similarities of 96.5–98.5 % to type strains of other recognized species of the genus Litoreibacter . Strain RSS4-C1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and 11-methyl-C18 : 1ω7c as the major fatty acids. The major polar lipids of strain RSS4-C1T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain RSS4-C1T was 58.0 mol% and its DNA–DNA relatedness values with type strains of four species of the genus Litoreibacter were 21–34 %. The differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain RSS4-C1T is distinct from other species of the genus Litoreibacter . On the basis of the data presented, strain RSS4-C1T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter ascidiaceicola sp. nov. is proposed. The type strain is RSS4-C1T ( = KCTC 42050T = CECT 8539T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6396-6401 ◽  
Author(s):  
Young-Ok Kim ◽  
In-Suk Park ◽  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-motile and ovoid or rod-shaped bacterial strain, MYP5T, was isolated from seawater in Jeju island of South Korea. MYP5T grew optimally at 30–35 °C and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that MYP5T fell within the clade enclosed by the type strains of species of the genus Alteromonas , clustering with the type strains of Alteromonas confluentis and Alteromonas halophila . MYP5T exhibited the highest 16S rRNA gene sequence similarity value (98.0 %) to the type strain of A. confluentis and similarities of 95.1–97.9 % to the type strains of the other species of the genus Alteromonas . ANI and dDDH values of genomic sequences between MYP5T and the type strains of 22 species of the genus Alteromonas were 66.8–70.5 % and 18.6–27.5 %, respectively. The DNA G+C content of MYP5T, determined from the genome sequence, was 46.1 %. MYP5T contained Q-8 as the predominant ubiquinone and C18 : 1 ω7c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and 10-methyl C17 : 0 as the major fatty acids. The major polar lipids of MYP5T were phosphatidylethanolamine and phosphatidylglycerol. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that MYP5T is separated from species of the genus Alteromonas . On the basis of the data presented, MYP5T is considered to represent a novel species of the genus Alteromonas , for which the name Alteromonas ponticola sp. nov. is proposed. The type strain is MYP5T (=KCTC 82144T=NBRC 114354T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1984-1990 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
Yong-Taek Jung ◽  
Dong-Gyun Kim ◽  
...  

A Gram-stain-negative, non-motile, coccoid, ovoid or rod-shaped bacterial strain, designated RSS3-C1T, was isolated from a golden sea squirt (Halocynthia aurantium) collected from the East Sea, South Korea. Strain RSS3-C1T was found to grow optimally at 20–25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain RSS3-C1T clustered with the type strains of Lutimonas vermicola and Aestuariicola saemankumensis . Strain RSS3-C1T exhibited 98.8 % 16S rRNA gene sequence similarity to each type strain. Strain RSS3-C1T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH and anteiso-C15 : 0 as the major fatty acids. The major polar lipids of strain RSS3-C1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain RSS3-C1T was 39.2 mol%, and DNA–DNA relatedness to the type strains of and was 21±5.3 and 26±7.5 %, respectively. The differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain RSS3-C1T is separated from and . On the basis of the data presented, strain RSS3-C1T is considered to represent a novel species of the genus Lutimonas , for which the name Lutimonas halocynthiae sp. nov. is proposed. The type strain is RSS3-C1T ( = KCTC 32537T = CECT 8444T). In this study, it is also proposed that Aestuariicola saemankumensis should be reclassified as a member of the genus Lutimonas , as Lutimonas saemankumensis comb. nov. (type strain SMK-142T = KCTC 22171T = CCUG 55329T), and the description of the genus Lutimonas is emended.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3447-3452 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
Dong-Gyun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterial strain, designated YSS-7T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea of South Korea. Strain YSS-7T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain YSS-7T clustered with the type strains of Pelagicola litoralis , Planktotalea frisia , Pacificibacter maritimus and Roseovarius marinus . Strain YSS-7T exhibited the highest 16S rRNA gene sequence similarity (97.7 %) to the type strain of Pelagicola litoralis and sequence similarity of more than 96.0 % to the type strains of some other species. Strain YSS-7T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and 11-methyl C18 : 1ω7c as the major fatty acids. The major polar lipids of strain YSS-7T were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid. The fatty acid and polar lipid profiles of strain YSS-7T were different from those of the type strains of phylogenetically related species. The DNA G+C content of strain YSS-7T was 55.5 mol%. Other phenotypic properties demonstrated that strain YSS-7T is distinguished from phylogenetically related species. On the basis of the data presented, strain YSS-7T is considered to represent a novel genus and species, for which the name Pseudopelagicola gijangensis gen. nov., sp. nov. is proposed. The type strain of Pseudopelagicola gijangensis is YSS-7T ( = KCTC 42049T = CECT 8540T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1348-1353 ◽  
Author(s):  
Hui-xian Wu ◽  
Pok Yui Lai ◽  
On On Lee ◽  
Xiao-jian Zhou ◽  
Li Miao ◽  
...  

A novel Gram-negative, aerobic, catalase- and oxidase-positive, non-sporulating, non-motile, rod-shaped bacterium, designated strain UST081027-248T, was isolated from seawater of the Red Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UST081027-248T fell within the genus Erythrobacter . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of Erythrobacter species ranged from 95.3 % (with Erythrobacter gangjinensis ) to 98.2 % (with Erythrobacter citreus ). However, levels of DNA–DNA relatedness between strain UST081027-248T and the type strains of closely related species were below 70 %. Optimal growth of the isolate occurred in the presence of 2.0 % NaCl, at pH 8.0–9.0 and at 28–36 °C. The isolate did not produce bacteriochlorophyll a. The predominant cellular fatty acids were C17 : 1ω6c, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C15 : 0 2-OH. The genomic DNA G+C content of strain UST081027-248T was 60.4 mol%. Phenotypic properties and phylogenetic distinctiveness clearly indicated that strain UST081027-248T represents a novel species of the genus Erythrobacter , for which the name Erythrobacter pelagi sp. nov. is proposed. The type strain is UST081027-248T ( = JCM 17468T = NRRL 59511T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6301-6306
Author(s):  
Sooyeon Park ◽  
Seo Yeon Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23T, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23T fell within the clade comprising the type strains of Pseudoalteromonas species, clustering with the type strains of P. byunsanensis and P. amylolytica . Strain JBTF-M23T exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of P. rubra and sequence similarities of 98.3 and 97.7 % to the type strains of P. byunsanensis and P. amylolytica, respectively. The DNA G+C content of strain JBTF-M23T from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23T and the type strains of P. rubra , P. byunsanensis and P. amylolytica were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23T contained Q-8 as the predominant ubiquinone and C16 : 1  ω7c and/or C16 : 1  ω6c, C16 : 0 and C18 : 1  ω7c as the major fatty acids. The major polar lipids of strain JBTF-M23T were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23T is separated from recognized Pseudoalteromonas species. On the basis of the data presented, strain JBTF-M23Tis considered to represent a novel species of the genus Pseudoalteromonas , for which the name Pseudoalteromonas caenipelagi sp. nov. is proposed. The type strain is JBTF-M23T(=KACC 19900T=NBRC 113647T).


Sign in / Sign up

Export Citation Format

Share Document