scholarly journals Porphyrobacter dokdonensis sp. nov., isolated from sea water

2006 ◽  
Vol 56 (5) ◽  
pp. 1079-1083 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Mi-Hwa Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-74T, was isolated from sea water off the island of Dokdo, Korea, and its taxonomic position was investigated by a polyphasic study. Strain DSW-74T grew optimally at 37 °C and in the presence of 2 % (w/v) NaCl. It contained Q-10 as the predominant ubiquinone and C17 : 1 ω6c and C18 : 1 ω7c as the major fatty acids. Its DNA G+C content was 65.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-74T was most closely related to Porphyrobacter species. Similarity values between the 16S rRNA gene sequence of strain DSW-74T and those of the type strains of recognized Porphyrobacter species and of Erythromicrobium ramosum were in the range 97.4–98.7 %. Strain DSW-74T exhibited 16S rRNA gene sequence similarity values of <97.5 % to recognized Erythrobacter species and the other species used in the phylogenetic analysis. DNA–DNA relatedness levels and differential phenotypic properties made it possible to categorize strain DSW-74T as representing a novel Porphyrobacter species. On the basis of the taxonomic data presented, it is proposed that DSW-74T (=KCTC 12395T=DSM 17193T) should be classified in the genus Porphyrobacter as the type strain of a novel species, Porphyrobacter dokdonensis sp. nov.

2010 ◽  
Vol 60 (6) ◽  
pp. 1334-1338 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, non-motile and rod- or coccoid-shaped bacterial strain, MDN22T, was isolated from a soil sample from Korea. Strain MDN22T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 0–0.5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MDN22T was phylogenetically most closely related to the genera Nocardioides and Marmoricola. In the neighbour-joining phylogenetic tree, strain MDN22T was most closely related to Nocardioides jensenii KCTC 9134T, with which it exhibited 98.3 % 16S rRNA gene sequence similarity. The strain exhibited 93.1–96.9 % and 95.3–95.9 % 16S rRNA gene sequence similarities to the type strains of other species of the genera Nocardioides and Marmoricola, respectively. The chemotaxonomic properties of strain MDN22T were consistent with those of the genus Nocardioides; the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, the predominant menaquinone was MK-8(H4) and the major fatty acids were iso-C16 : 0 and C17 : 1. The DNA G+C content was 68.7 mol%. DNA–DNA relatedness data and differential phenotypic properties suggested that strain MDN22T could be differentiated from N. jensenii and Nocardioides dubius. On the basis of the data obtained, strain MDN22T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides daedukensis sp. nov., is proposed. The type strain is MDN22T (=KCTC 19601T=CCUG 57505T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1842-1848 ◽  
Author(s):  
Kikue Hirota ◽  
Keiko Yamahira ◽  
Kenji Nakajima ◽  
Yoshinobu Nodasaka ◽  
Hidetoshi Okuyama ◽  
...  

A psychrotolerant, facultatively alkaliphilic strain, HT-3T, was isolated from a sample of soil immersed in hot-spring water containing hydrocarbons in Toyotomi, Hokkaido, Japan. 16S rRNA gene sequence-based phylogeny suggested that strain HT-3T is a member of the genus Pseudomonas and belongs to the Pseudomonas oleovorans group. Cells of the isolate were Gram-negative, aerobic, straight rods, motile by a single polar flagellum. The strain grew at 4–42 °C, with optimum growth at 35 °C at pH 7, and at pH 6–10. It hydrolysed Tweens 20, 40, 60 and 80, but not casein, gelatin, starch or DNA. Its major isoprenoid quinone was ubiquinone-9 (Q-9) and the DNA G+C content was 65.1 mol%. The whole-cell fatty acid profile consisted mainly of C16 : 0, C16 : 1ω9c and C18 : 1ω9c. Phylogenetic analyses based on gyrB, rpoB and rpoD sequences revealed that the isolate could be discriminated from Pseudomonas species that exhibited more than 97 % 16S rRNA gene sequence similarity and phylogenetic neighbours belonging to the P. oleovorans group including the closest relative of the isolate, Pseudomonas alcaliphila. DNA–DNA hybridization with P. alcaliphila AL15-21T revealed 51±5 % relatedness. Owing to differences in phenotypic properties and phylogenetic analyses based on multilocus gene sequence analysis and DNA–DNA relatedness data, the isolate merits classification in a novel species, for which the name Pseudomonas toyotomiensis sp. nov. is proposed. The type strain is HT-3T ( = JCM 15604T  = NCIMB 14511T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2908-2912 ◽  
Author(s):  
Young-Ok Kim ◽  
Hee Jeong Kong ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Kyung-Kil Kim ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming and short rod- or rod-shaped bacterial strain, designated 22-5T, was isolated from a bluespotted cornetfish, Fistularia commersonii, and subjected to taxonomic study. Strain 22-5T grew optimally at 30 °C and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 22-5T belonged to the genus Paracoccus and joined the cluster comprising Paracoccus homiensis DD-R11T and Paracoccus zeaxanthinifaciens ATCC 21588T, with which strain 22-5T exhibited 97.4 and 96.9 % 16S rRNA gene sequence similarity, respectively. Strain 22-5T exhibited 94.0–96.6 % 16S rRNA gene sequence similarity with the other type strains of species of the genus Paracoccus. Strain 22-5T contained Q-10 as the predominant menaquinone and C18 : 1 ω7c as the predominant fatty acid. In this study, P. zeaxanthinifaciens KCTC 22688T also contained Q-10 as the predominant isoprenoid quinone. The DNA G+C content of strain 22-5T was 63.6 mol%. Strain 22-5T exhibited 44 and 32 % DNA–DNA relatedness to P. homiensis KACC 11518T and P. zeaxanthinifaciens KCTC 22688T, respectively. On the basis of phenotypic, phylogenetic and genetic data, strain 22-5T is considered to represent a novel species of the genus Paracoccus, for which the name Paracoccus fistulariae sp. nov. is proposed. The type strain is 22-5T (=KCTC 22803T =CCUG 58401T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1755-1759 ◽  
Author(s):  
Deborah De Clercq ◽  
Stefanie Van Trappen ◽  
Ilse Cleenwerck ◽  
An Ceustermans ◽  
Jean Swings ◽  
...  

Three Gram-negative, yellow-pigmented strains were isolated from the rhizospheres of Spathiphyllum plants grown in a compost-amended potting mix. The strains showed biological control activity towards the root-rot plant pathogen Cylindrocladium spathiphylli, and were characterized to determine their taxonomic position. Cells of the strains were non-motile rods, and the strains were oxidase- and catalase-positive and unable to ferment most sugars tested. The three strains showed differences in growth temperature range, optimal growth temperature and some biochemical reactions. The majority of the fatty acids were branched, and large amounts of 15 : 0 iso and 17 : 1 iso ω9c were present. The 16S rRNA gene sequence (1497 bp) of strain B39T showed the highest level of similarity (98.5 %) to that of Rhodanobacter fulvus IAM 15025T, followed by Rhodanobacter lindaniclasticus LMG 18385T (96.0 %; strain no longer extant), Dyella koreensis CCUG 50883T (96.4 %), Dyella japonica DSM 16301T (96.3 %), Frateuria aurantia LMG 1558T (96.2 %) and Fulvimonas soli LMG 19981T (95.9 %). Less than 90 % 16S rRNA gene sequence similarity was observed for other members of the Gammaproteobacteria. The mean DNA–DNA reassociation value for the three strains was 100 % and was 25 % when the strains were compared with DNA from R. fulvus LMG 23003T. The strains had a mean DNA G+C content of 67.6 mol%. On the basis of their phylogenetic, genomic and phenotypic properties, the three strains represent a novel species within the genus Rhodanobacter, for which the name Rhodanobacter spathiphylli sp. nov. is proposed. The type strain is strain B39T (=LMG 23181T=DSM 17631T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2089-2095 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-motile, pleomorphic bacterial strains, DS-40T and DS-45T, were isolated from a soil sample collected from Dokdo, Korea, and their exact taxonomic positions were investigated by using a polyphasic approach. Strains DS-40T and DS-45T grew optimally at 25 °C and pH 6.5–7.5 in the presence of 0–1.0 % (w/v) NaCl. They contained MK-7 as the predominant menaquinone and possessed iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C contents of strains DS-40T and DS-45T were 36.0 and 36.8 mol%, respectively. Strains DS-40T and DS-45T shared a 16S rRNA gene sequence similarity of 96.7 % and demonstrated a mean DNA–DNA relatedness level of 12 %. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains DS-40T and DS-45T were most closely phylogenetically affiliated with the genus Pedobacter of the family Sphingobacteriaceae. Strains DS-40T and DS-45T exhibited 16S rRNA gene sequence similarity values of 91.4–93.7 and 89.9–91.6 % with respect to the type strains of Pedobacter and Sphingobacterium species, respectively. Phenotypic and chemotaxonomic properties, together with the phylogenetic data, support the assignment of strains DS-40T and DS-45T as two distinct species within the genus Pedobacter. On the basis of phenotypic, phylogenetic and genetic data, strains DS-40T and DS-45T represent two novel species of the genus Pedobacter, for which the names Pedobacter lentus sp. nov. and Pedobacter terricola sp. nov. are proposed, respectively. The respective type strains are DS-40T (=KCTC 12875T=JCM 14593T) and DS-45T (=KCTC 12876T=JCM 14594T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1904-1908 ◽  
Author(s):  
Kannika Duangmal ◽  
Ratchanee Mingma ◽  
Arinthip Thamchaipenet ◽  
Atsuko Matsumoto ◽  
Yoko Takahashi

The taxonomic position of a rhizosphere soil isolate, designated strain SR8.15T, was determined by using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-separated sub-branch within the radiation encompassing the genus Saccharopolyspora. Highest levels of 16S rRNA gene sequence similarity were found between strain SR8.15T and Saccharopolyspora shandongensis CGMCC 4.3530T (98.9 %) and Saccharopolyspora spinosa DSM 44228T (98.5 %). However, these strains shared low levels of DNA–DNA relatedness (<26 %). Strain SR8.15T had chemical characteristics consistent with its classification in the genus Saccharopolyspora. It contained meso-diaminopimelic acid as the diagnostic diamino acid. Whole-cell hydrolysates contained arabinose and galactose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol. The main menaquinone was MK-9(H4). No mycolic acid was detected. The predominant cellular fatty acid was iso-C16 : 0. The G+C content of the genomic DNA of strain SR8.15T was 70.3 mol%. Strain SR8.15T had a phenotypic profile that readily distinguished it from recognized representatives of the genus Saccharopolyspora. It is evident from its combined genotypic and phenotypic properties that strain SR8.15T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora phatthalungensis sp. nov. is proposed. The type strain is SR8.15T (=TISTR 1921T=BCC 35844T=NRRL B-24798T).


2005 ◽  
Vol 55 (2) ◽  
pp. 913-917 ◽  
Author(s):  
F. L. Thompson ◽  
C. C. Thompson ◽  
S. Naser ◽  
B. Hoste ◽  
K. Vandemeulebroecke ◽  
...  

Six new Vibrio-like isolates originating from different species of bleached and healthy corals around Magnetic Island (Australia) were investigated using a polyphasic approach. Phylogenetic analyses based on 16S rRNA, recA and rpoA gene sequences split the isolates in two new groups. Strains LMG 22223T, LMG 22224, LMG 22225, LMG 22226 and LMG 22227 were phylogenetic neighbours of Photobacterium leiognathi LMG 4228T (95·6 % 16S rRNA gene sequence similarity), whereas strain LMG 22228T was related to Enterovibrio norvegicus LMG 19839T (95·5 % 16S rRNA gene sequence similarity). The two new groups can be distinguished from closely related species on the basis of several phenotypic features, including fermentation of d-mannitol, melibiose and sucrose, and utilization of different compounds as carbon sources, arginine dihydrolase activity, nitrate reduction, resistance to the vibriostatic agent O/129 and the presence of fatty acids 15 : 0 iso and 17 : 0 iso. The names Photobacterium rosenbergii sp. nov. (type strain LMG 22223T=CBMAI 622T=CC1T) and Enterovibrio coralii sp. nov. (type strain LMG 22228T=CBMAI 623T=CC17T) are proposed to accommodate these new isolates. The G+C contents of the DNA of the two type strains are respectively 47·6 and 48·2 mol%.


2011 ◽  
Vol 61 (11) ◽  
pp. 2573-2576 ◽  
Author(s):  
Sooyeon Park ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, motile, agarolytic bacterium, designated M-M1T, was isolated from marine sand obtained from Geoje Island, South Sea, Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain M-M1T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. It did not grow in the presence of >7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M-M1T fell within the clade comprising members of the genus Thalassomonas, clustering with Thalassomonas agarivorans TMA1T, Thalassomonas loyana CBMAI 722T and Thalassomonas ganghwensis JC2041T, with which it exhibited 16S rRNA gene sequence similarity values of 96.4, 96.0 and 94.9 % respectively. Strain M-M1T exhibited 94.7–95.2 % 16S rRNA gene sequence similarity to the other species of the genus Thalassomonas. Strain M-M1T contained Q-8 as the predominant ubiquinone and C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1ω7c as the major fatty acids. The DNA G+C content was 44.2 mol%. Strain M-M1T could be differentiated from phylogenetically related species of the genus Thalassomonas by differences in some phenotypic properties. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain M-M1T is considered to represent a novel species of the genus Thalassomonas, for which the name Thalassomonas agariperforans sp. nov. is proposed. The type strain is M-M1T ( = KCTC 23343T  = CCUG 60020T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3097-3102 ◽  
Author(s):  
Raja Lakhal ◽  
Nathalie Pradel ◽  
Anne Postec ◽  
Bernard Ollivier ◽  
Jean-Luc Cayol ◽  
...  

A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766HT, was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002 m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766HT grew at temperatures of 25–45 °C (optimum 30 °C), pH 6.7–8.1 (optimum 7.5) and in a salinity of 5–60 g l− 1 NaCl (optimum 30 g l− 1). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766HT was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766HT was Geosporobacter subterraneus (94.2 % 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766HT ( = DSM 27501T = JCM 19377T) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.


Sign in / Sign up

Export Citation Format

Share Document