heterotrophic bacterium
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 3)

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manqi Zhang ◽  
Qiong Xue ◽  
Shengjie Zhang ◽  
Heng Zhou ◽  
Tong Xu ◽  
...  

AbstractMicroorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Oleg S. Pokrovsky ◽  
Liudmila S. Shirokova ◽  
Svetlana A. Zabelina ◽  
Guntram Jordan ◽  
Pascale Bénézeth

AbstractAssessment of the microbial impact on mineral dissolution is crucial for a predictive understanding of basic (Ca, Mg bearing) silicate weathering and the associated CO2 consumption, bioerosion, and CO2 storage in basaltic rocks. However, there are controversies about the mechanism of microbial effect, which ranges from inhibiting via nil to accelerating. Here we studied diopside interaction with the heterotrophic bacterium Pseudomonas reactants and the soil fungus Chaetomium brasiliense using a combination of mixed-flow and batch reactors and in situ (AFM) and ex situ (SEM) microscopy. The results provide new nano-level insights into the degree to which microorganisms modify silicate dissolution. Taking into account negligible effects of organic ligands on diopside dissolution as reported earlier, we conclude that the microbial effect on Ca-Mg silicates is weak and the acceleration of dissolution of “basic” silicate rocks in the presence of soil biota is solely due to pH decrease in porewaters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia-Yi Cao ◽  
Ying-Ying Wang ◽  
Min-Nan Wu ◽  
Zhou-Yan Kong ◽  
Jing-Hao Lin ◽  
...  

Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.


2021 ◽  
Author(s):  
Julian Damashek ◽  
Barbara Bayer ◽  
Gerhard J Herndl ◽  
Natalie J Wallsgrove ◽  
Tamara Allen ◽  
...  

Genomic and physiological evidence from some strains of ammonia-oxidizing Thaumarchaeota demonstrate their additional ability to oxidize nitrogen (N) supplied as urea or cyanate, fueling conjecture about their ability to conserve energy by directly oxidizing reduced N from other dissolved organic nitrogen (DON) compounds. Similarly, field studies have shown rapid oxidation of polyamine-N in the ocean, but it is unclear whether Thaumarchaeota oxidize polyamine-N directly or whether heterotrophic DON remineralization is required. We tested growth of two marine Nitrosopumilus isolates on DON compounds including polyamines, amino acids, primary amines, and amides as their sole energy source. Though axenic cultures only consumed N supplied as ammonium or urea, there was rapid but inconsistent oxidation of N from the polyamine putrescine when cultures included a heterotrophic bacterium. Surprisingly, axenic cultures oxidized 15N-putrescine during growth on ammonia, suggesting co-metabolism or accelerated breakdown of putrescine by reactive metabolic byproducts. Nitric oxide, hydrogen peroxide, or peroxynitrite did not oxidize putrescine in sterile seawater. These data suggest that the N in common DON molecules is not directly accessible to marine Thaumarchaeota, with thaumarchaeal oxidation (and presumably assimilation) of DON-N requiring initial heterotrophic remineralization. However, reactive byproducts or enzymatic co-metabolism may facilitate limited thaumarchaeal DON-N oxidation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251643
Author(s):  
Hannah Laeverenz Schlogelhofer ◽  
François J. Peaudecerf ◽  
Freddy Bunbury ◽  
Martin J. Whitehouse ◽  
Rachel A. Foster ◽  
...  

Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cyprien Verseux ◽  
Christiane Heinicke ◽  
Tiago P. Ramalho ◽  
Jonathan Determann ◽  
Malte Duckhorn ◽  
...  

The leading space agencies aim for crewed missions to Mars in the coming decades. Among the associated challenges is the need to provide astronauts with life-support consumables and, for a Mars exploration program to be sustainable, most of those consumables should be generated on site. Research is being done to achieve this using cyanobacteria: fed from Mars's regolith and atmosphere, they would serve as a basis for biological life-support systems that rely on local materials. Efficiency will largely depend on cyanobacteria's behavior under artificial atmospheres: a compromise is needed between conditions that would be desirable from a purely engineering and logistical standpoint (by being close to conditions found on the Martian surface) and conditions that optimize cyanobacterial productivity. To help identify this compromise, we developed a low-pressure photobioreactor, dubbed Atmos, that can provide tightly regulated atmospheric conditions to nine cultivation chambers. We used it to study the effects of a 96% N2, 4% CO2 gas mixture at a total pressure of 100 hPa on Anabaena sp. PCC 7938. We showed that those atmospheric conditions (referred to as MDA-1) can support the vigorous autotrophic, diazotrophic growth of cyanobacteria. We found that MDA-1 did not prevent Anabaena sp. from using an analog of Martian regolith (MGS-1) as a nutrient source. Finally, we demonstrated that cyanobacterial biomass grown under MDA-1 could be used for feeding secondary consumers (here, the heterotrophic bacterium E. coli W). Taken as a whole, our results suggest that a mixture of gases extracted from the Martian atmosphere, brought to approximately one tenth of Earth's pressure at sea level, would be suitable for photobioreactor modules of cyanobacterium-based life-support systems. This finding could greatly enhance the viability of such systems on Mars.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1491
Author(s):  
Jarod Setiaji ◽  
Feli Feliatra ◽  
Hilwan Yuda Teruna ◽  
Iesje Lukistyowati ◽  
Indra Suharman ◽  
...  

Background: Disease causing bacteria such as Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa present a problem for fish farming. Treatment to remove them are generally carried out using antibiotics which have side effects on fish, the environment and humans. However, the use of antibacterial compounds derived from heterotrophic bacteria serve as a good alternative for antibiotics. Therefore, this study aimed to explore antibacterial activity in the secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. Methods: Heterotrophic bacteria namely Bacillus sp. JS04 MT102913.1, Bacillus toyonensis JS08 MT102920.1, Bacillus cereus JS10 MT102922.1, Bacillus sp. JS11 MT102923.1, Pseudoalteromonas sp. JS19 MT102924.1, Bacillus cereus JS22 MT102926.1, and Bacillus sp. strain JS25 MT102927.1 were used in this study. The sequences of these bacteria have been deposited and are available from NCBI GenBank. Each heterotrophic bacterium was cultured on 6L nutrient broth for 8 days, and extracts produced using ethyl acetate to obtain their secondary metabolites. These extracts were tested for their phytochemical contents using FT-IR and also tested for their inhibitory property in pathogenic bacteria by agar diffusion method. Results: Phytochemical test results showed that the seven heterotrophic bacterial isolates produced terpenoid compounds. Based on the inhibitory test, the secondary metabolite extracts from Bacillus sp strain JS04 had the highest inhibitory effect on the growth of pathogenic bacteria namely, V. alginolyticus (17.5 mm), A. hydrophila (16.8 mm), and P. aeruginosa (17.3 mm). Conclusion: It was concluded that the secondary metabolite extracts of heterotrophic bacteria inhibit the growth of V. alginolyticus, A. hydrophila, and P. aeruginosa.


Author(s):  
Daniela Billi ◽  
Beatriz Gallego Fernandez ◽  
Claudia Fagliarone ◽  
Salvatore Chiavarini ◽  
Lynn Justine Rothschild

Abstract The presence of perchlorate in the Martian soil may limit in-situ resource utilization (ISRU) technologies to support human outposts. In order to exploit the desiccation, radiation-tolerant cyanobacterium Chroococcidopsis in Biological Life Support Systems based on ISRU, we investigated the perchlorate tolerance of Chroococcidopsis sp. CCMEE 029 and its derivative CCMEE 029 P-MRS. This strain was obtained from dried cells mixed with Martian regolith simulant and exposed to Mars-like conditions during the BIOMEX space experiment. After a 55-day exposure of up to 200 mM perchlorate ions, a tolerance threshold value of 100 mM perchlorate ions was identified for both Chroococcidopsis strains. After 40-day incubation, a Mars-relevant perchlorate concentration of 2.4 mM perchlorate ions, provided as a 60 and 40% mixture of Mg- and Ca-perchlorate, had no negative effect on the growth rate of the two strains. A proof-of-concept experiment was conducted using Chroococcidopsis lysate in ISRU technologies to feed a heterotrophic bacterium, i.e. an Escherichia coli strain capable of metabolizing sucrose. The sucrose content was fivefold increased in Chroococcidopsis cells through air-drying and the yielded lysate successfully supported the bacterial growth. This suggested that Chroococcidopsis is a suitable candidate for ISRU technologies to support heterotrophic BLSS components in a Mars-relevant perchlorate environment that would prove challenging to many other cyanobacteria, allowing a ‘live off the land’ approach on Mars.


Sign in / Sign up

Export Citation Format

Share Document