scholarly journals Alkalibacillus filiformis sp. nov., isolated from a mineral pool in Campania, Italy

2005 ◽  
Vol 55 (6) ◽  
pp. 2395-2399 ◽  
Author(s):  
Ida Romano ◽  
Licia Lama ◽  
Barbara Nicolaus ◽  
Agata Gambacorta ◽  
Assunta Giordano

A halo-alkaliphilic, Gram-positive, non-motile bacterium, designated strain 4AGT, was isolated from a mineral pool located in Malvizza, Campania, southern Italy. On the basis of 16S rRNA gene sequence analysis, strain 4AGT was shown to belong to the genus Alkalibacillus within the phylum Firmicutes; its phylogenetic distance from recognized Alkalibacillus species was <95·0 %. Chemotaxonomic data (MK-7 as the major menaquinone; directly cross-linked meso-diaminopimelic acid in the cell wall; phosphatidylglycerol and diphosphatidylglycerol as major polar lipids; iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 as major fatty acids; and glycine betaine and glutamate as major compatible solutes) supported the affiliation of the strain to the genus Alkalibacillus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 4AGT from the two recognized Alkalibacillus species. Strain 4AGT therefore represents a novel species, for which the name Alkalibacillus filiformis sp. nov. is proposed. The type strain is 4AGT (=DSM 15448T=ATCC BAA-956T).

2004 ◽  
Vol 54 (4) ◽  
pp. 1213-1216 ◽  
Author(s):  
Huapeng Fan ◽  
Yanfen Xue ◽  
Yanhe Ma ◽  
Antonio Ventosa ◽  
William D. Grant

A novel haloalkaliphilic archaeon, strain 8W8T, was isolated from Lake Zabuye, on the Tibetan Plateau, China. On the basis of 16S rRNA gene sequence analysis, strain 8W8T was shown to belong to the genus Halorubrum and was related to Halorubrum vacuolatum (96·7 % sequence similarity), Halorubrum saccharovorum (96·0 %), Halorubrum lacusprofundi (95·4 %) and Halorubrum sodomense (95·3 %). The phylogenetic distance from any species within the other genera of Halobacteriales was lower than 90 %. The major polar lipids of strain 8W8T were C20C20 and C20C25 derivatives of phosphatidylglycerol phosphate and phosphatidylglycerol phosphate methyl ester. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 8W8T from the eight Halorubrum species with validly published names. Therefore, strain 8W8T represents a novel species, for which the name Halorubrum tibetense sp. nov. is proposed, with the type strain 8W8T (=AS 1.3239T=JCM 11889T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1997-2000 ◽  
Author(s):  
Bram Vanparys ◽  
Kim Heylen ◽  
Liesbeth Lebbe ◽  
Paul De Vos

A Gram-negative, rod-shaped, non-spore-forming bacteria was isolated from a nitrifying inoculum. On the basis of 16S rRNA gene sequence similarity, this strain, designated LMG 22951T, was shown to belong to the ‘Alphaproteobacteria’ and to be related to Devosia neptuniae (97·4 %) and Devosia riboflavina (97·0 %). The results of DNA–DNA hybridization, analysis of fatty acid composition, SDS-PAGE, physiological and biochemical tests allowed genotypic and phenotypic differentiation of LMG 22951T from the two recognized Devosia species. LMG 22951T therefore represents a novel species within this genus, for which the name Devosia limi is proposed. The type strain is LMG 22951T (=DSM 17137T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1615-1619 ◽  
Author(s):  
Myung Kyum Kim ◽  
Wan-Taek Im ◽  
Jun-Gyo In ◽  
Sung-Hoon Kim ◽  
Deok-Chun Yang

A Gram-negative, non-spore-forming, rod-shaped, motile bacterium, strain Ko06T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Ko06T belongs to the Gammaproteobacteria, and the highest levels of sequence similarity were with Thermomonas brevis LMG 21746T (98.4 %), Thermomonas fusca LMG 21737T (97.7 %), Thermomonas haemolytica A50-7-3T (96.5 %) and Thermomonas hydrothermalis SGM-6T (95.8 %). Chemotaxonomic data revealed that strain Ko06T possesses ubiquinone Q-8 and that the predominant fatty acids are C15 : 0 iso, C11 : 0 iso and C11 : 0 iso 3-OH, all of which corroborated assignment of the strain to the genus Thermomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Ko06T represents a distinct species. On the basis of these data, strain Ko06T (=KCTC 12540T=NBRC 101155T) should be classified as the type strain of a novel Thermomonas species, for which the name Thermomonas koreensis sp. nov. is proposed.


2010 ◽  
Vol 60 (7) ◽  
pp. 1522-1526 ◽  
Author(s):  
Ho-Bin Kim ◽  
Sathiyaraj Srinivasan ◽  
Gayathri Sathiyaraj ◽  
Lin-Hu Quan ◽  
Se-Hwa Kim ◽  
...  

A Gram-negative, non-spore-forming, rod-shaped bacterium, designated strain DCY01T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain DCY01T belonged to the Gammaproteobacteria and was most closely related to Stenotrophomonas koreensis KCTC 12211T (98.4 % similarity), Stenotrophomonas humi R-32729T (97.2 %), Stenotrophomonas terrae R-32768 (97.1 %), Stenotrophomonas maltophilia DSM 50170T (96.9 %) and Stenotrophomonas nitritireducens DSM 12575T (96.8 %). Chemotaxonomic analyses revealed that strain DCY01T possessed a quinone system with Q-8 as the predominant compound, and iso-C15 : 0 (28.2 %), C16 : 0 10-methyl (13.2 %), iso-C15 : 1 F (10.8 %) and C15 : 0 (7.5 %) as major fatty acids, corroborating assignment of strain DCY01T to the genus Stenotrophomonas. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain DCY01T represents a species distinct from recognized Stenotrophomonas species. Based on these data, DCY01T (=KCTC 12539T=NBRC 101154T) should be classified as the type strain of a novel species of the genus Stenotrophomonas, for which the name Stenotrophomonas ginsengisoli sp. nov. is proposed.


2007 ◽  
Vol 57 (11) ◽  
pp. 2618-2622 ◽  
Author(s):  
Elke Lang ◽  
Jolantha Swiderski ◽  
Erko Stackebrandt ◽  
P. Schumann ◽  
Cathrin Spröer ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium (strain NS11T) was isolated from a lichen-colonized rock surface. On the basis of 16S rRNA gene sequence similarity, strain NS11T was shown to belong to the Betaproteobacteria, and was most closely related to Herminiimonas arsenicoxydans ULPAs1T (98.8 %), Herminiimonas aquatilis CCUG 36956T (98.0 %) and Herminiimonas fonticola S-94T (98.0 %). Major whole-cell fatty acids were C16 : 0, C17 : 0 cyclo and C16 : 1 ω7c. Strain NS11T also contained high proportions of C10 : 0 3-OH and C18 : 1 ω7c. This pattern is typical for members of the genus Herminiimonas. The results of DNA–DNA hybridization experiments and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain NS11T from the three recognized Herminiimonas species. It is therefore concluded that strain NS11T represents a novel species of the genus Herminiimonas, for which the name Herminiimonas saxobsidens sp. nov. is proposed. The type strain is NS11T (=DSM 18748T=CCM 7436T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2129-2134 ◽  
Author(s):  
Andréia B. Estrela ◽  
Wolf-Rainer Abraham

A Gram-negative, rod-shaped, non-spore-forming bacterial strain, designated LMG 2337T, was isolated from the blood of a patient with endocarditis and characterized. The strain was affiliated with the alphaproteobacterial genus Brevundimonas, with Brevundimonas diminuta LMG 2089T (98.3 % 16S rRNA gene sequence similarity) and Brevundimonas terrae KSL-145T (97.5 %) as its closest relatives. This affiliation was supported by chemotaxonomic data: the G+C content was 66.3 mol %, the major polar lipids were phosphatidyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidyl glucopyranosyl diacylglycerol and the major fatty acids were summed feature 7 (one or more of C18 : 1 ω7c, C18 : 1 ω9t and C18 : 1 ω12t) and C16 : 0. Strain LMG 2337T displayed an unusually broad substrate spectrum. The results from DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain LMG 2337T from all of the type strains of hitherto-described Brevundimonas species. The strain therefore represents a novel species, for which the name Brevundimonas vancanneytii sp. nov. is proposed, with type strain LMG 2337T (=CCUG 1797T =ATCC 14736T).


2006 ◽  
Vol 56 (2) ◽  
pp. 453-457 ◽  
Author(s):  
Hee-Chan Yang ◽  
Wan-Taek Im ◽  
Kwang Kyu Kim ◽  
Dong-Shan An ◽  
Sung-Taik Lee

A Gram-negative, slightly curved rod-shaped bacterium, designated strain KMY02T, was isolated from a forest soil in Daejeon, South Korea. On the basis of 16S rRNA gene sequence similarity, strain KMY02T was shown to belong to the family Burkholderiaceae of the Betaproteobacteria, and to be related most closely to Burkholderia hospita LMG 20598T (98·7 %), Burkholderia caribensis LMG 18531T (98·0 %) and Burkholderia phymatum LMG 21445T (97·4 %). Its phylogenetic distance from all recognized species within the genus Burkholderia was less than 97 %. Chemotaxonomic data [Q-8 as the major ubiquinone; C16 : 0, C17 : 0 cyclo, summed feature 7 (C18 : 1 ω7c/ω9t/ω12t) and C15 : 0 as the major fatty acids] supported the affiliation of strain KMY02T to the genus Burkholderia. The results of DNA–DNA hybridization experiments and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the strain from recognized Burkholderia species. Therefore, KMY02T (=KCTC 12388T=NBRC 100964T) represents the type strain of a novel species, for which the name Burkholderia terrae sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2193-2197 ◽  
Author(s):  
Qiang Gu ◽  
Hongli Luo ◽  
Wen Zheng ◽  
Zhiheng Liu ◽  
Ying Huang

A high-G+C-content, Gram-positive bacterium, strain D10T, was isolated from the root of Oroxylum indicum, a Chinese medicinal plant. Based on 16S rRNA gene sequence analysis, strain D10T was a member of the genus Pseudonocardia and was most closely related, albeit loosely, to Pseudonocardia halophobica. Morphological and chemotaxonomic characteristics support the affiliation of strain D10T to the genus Pseudonocardia. Results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain D10T from related Pseudonocardia species. Strain D10T (=CGMCC 4.3143T=DSM 44984T) therefore represents a novel species, for which the name Pseudonocardia oroxyli sp. nov. is proposed.


2006 ◽  
Vol 56 (11) ◽  
pp. 2689-2692 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Soon-Wo Kwon ◽  
...  

A Gram-negative, obligately aerobic, rod-shaped bacterium was isolated from greenhouse soil used to cultivate lettuce. The strain, GH2-10T, was characterized on the basis of phenotypic and genotypic data. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Devosia, with highest sequence similarity (98.5 %) to Devosia riboflavina IFO 13584T. Sequence similarities with other strains tested were below 97.0 %. Strain GH2-10T had Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 59.5 mol%. The results of DNA–DNA hybridization experiments (47 % relatedness between D. riboflavina DSM 7230T and strain GH2-10T) and physiological and biochemical tests suggested that strain GH2-10T represents a novel species of the genus Devosia, for which the name Devosia soli sp. nov. is proposed. The type strain is GH2-10T (=KACC 11509T=DSM 17780T).


2006 ◽  
Vol 56 (3) ◽  
pp. 605-608 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
Enevold Falsen

Two Gram-negative, rod-shaped, non-spore-forming bacteria (CCUG 39402T and CCUG 39797), isolated from different water sources, were investigated in a polyphasic study. The two isolates shared 100 % 16S rRNA gene sequence similarity and it was shown that they belonged to the Betaproteobacteria, most closely related to Polaromonas vacuolata (97·8 %) and Polaromonas naphthalenivorans (97·8 %). A polyamine pattern with 2-hydroxyputrescine and putrescine, as well as ubiquinone Q-8, were in agreement with characteristics of Betaproteobacteria. The presence of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and major fatty acids C16 : 1 ω7c, C16 : 0 and C17 : 0 cyclo supported the affiliation of the two strains to the genus Polaromonas. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the two isolates from the two Polaromonas species with validly published names. They therefore represent a novel species, for which the name Polaromonas aquatica sp. nov. is proposed, with the type strain CCUG 39402T (=CIP 108776T).


Sign in / Sign up

Export Citation Format

Share Document