scholarly journals Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field

2010 ◽  
Vol 60 (7) ◽  
pp. 1522-1526 ◽  
Author(s):  
Ho-Bin Kim ◽  
Sathiyaraj Srinivasan ◽  
Gayathri Sathiyaraj ◽  
Lin-Hu Quan ◽  
Se-Hwa Kim ◽  
...  

A Gram-negative, non-spore-forming, rod-shaped bacterium, designated strain DCY01T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain DCY01T belonged to the Gammaproteobacteria and was most closely related to Stenotrophomonas koreensis KCTC 12211T (98.4 % similarity), Stenotrophomonas humi R-32729T (97.2 %), Stenotrophomonas terrae R-32768 (97.1 %), Stenotrophomonas maltophilia DSM 50170T (96.9 %) and Stenotrophomonas nitritireducens DSM 12575T (96.8 %). Chemotaxonomic analyses revealed that strain DCY01T possessed a quinone system with Q-8 as the predominant compound, and iso-C15 : 0 (28.2 %), C16 : 0 10-methyl (13.2 %), iso-C15 : 1 F (10.8 %) and C15 : 0 (7.5 %) as major fatty acids, corroborating assignment of strain DCY01T to the genus Stenotrophomonas. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain DCY01T represents a species distinct from recognized Stenotrophomonas species. Based on these data, DCY01T (=KCTC 12539T=NBRC 101154T) should be classified as the type strain of a novel species of the genus Stenotrophomonas, for which the name Stenotrophomonas ginsengisoli sp. nov. is proposed.

2010 ◽  
Vol 60 (7) ◽  
pp. 1672-1677 ◽  
Author(s):  
Sung-Lim Cho ◽  
Min Young Jung ◽  
Mi-Hak Park ◽  
Young-Hyo Chang ◽  
Jung-Hoon Yoon ◽  
...  

The taxonomic position of a Gram-positive, non-spore-forming strain, designated CAU 59T, from activated sludge was investigated. Colony morphology, biochemical tests and chemotaxonomic investigations revealed that strain CAU 59T possessed the characteristics of the genus Pseudoclavibacter. Comparative 16S rRNA gene sequence analysis showed sequence divergence values between strain CAU 59T and other described Pseudoclavibacter species of more than 3.6 %, and the strain formed a hitherto-unknown subline within the genus Pseudoclavibacter. DNA–DNA hybridization studies showed that strain CAU 59T displayed 20.9 % relatedness to its closest phylogenetic neighbour, Pseudoclavibacter helvolus DSM 20419T. The DNA G+C content was 66.2 mol%. The phenotypic, chemotaxonomic and genotypic data indicated that strain CAU 59T represents a novel species of the genus Pseudoclavibacter, for which the name Pseudoclavibacter chungangensis sp. nov. is proposed. The type strain is CAU 59T (=KCTC 22691T =CCUG 58142T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2010 ◽  
Vol 60 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The taxonomic position of strain JCM 2765T isolated from fermented cane molasses in Thailand was reinvestigated. Strain JCM 2765T was originally identified as representing Lactobacillus buchneri on the basis of biochemical and physiological characteristics. In the present study, 16S rRNA gene sequence analysis of strain JCM 2765T demonstrated a low level of similarity with the type strain of L. buchneri (92.5 %) and high levels with those of Lactobacillus collinoides (97.6 %) and Lactobacillus paracollinoides (98.0 %). Ribotyping was applied to investigate the relationships between strain JCM 2765T, L. collinoides and L. paracollinoides. The dendrogram based on ribotyping patterns showed one cluster for six strains of L. paracollinoides, and that strain JCM 2765T and L. collinoides JCM 1123T were each independent. Based on additional phenotypic findings and DNA–DNA hybridization results, strain JCM 2765T is considered to represent a novel species of the genus Lactobacillus, for which the name Lactobacillus similis sp. nov. is proposed. The type strain is JCM 2765T (=LMG 23904T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3196-3202 ◽  
Author(s):  
Van-An Hoang ◽  
Yeon-Ju Kim ◽  
Ngoc Lan Nguyen ◽  
Chang Ho Kang ◽  
Jong-Pyo Kang ◽  
...  

A novel Gram-staining-positive, rod-shaped bacterium, designated DCY100T, was isolated from rhizome of mountain ginseng root in Hwacheon mountain, Gangwon province, Republic of Korea. The 16S rRNA gene sequence analysis showed that strain DCY100T belonged to the genus Microbacterium and was most closely related to Microbacterium ginsengisoli KCTC 19189T (97.9 %), Microbacterium lacus JCM 15575T (97.2 %) and Microbacterium invictum DSM 19600T (97.1 %). The major menaquinones were MK-11 and MK-12. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The major fatty acids (>10.0 %) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall peptidoglycan contained the amino acids ornithine, alanine, glutamic acid and glycine; whole-cell sugars consisted of glucose, galactose, rhamnose and ribose. The DNA G+C content was 63.6 ± 0.7 mol%. The DNA–DNA hybridization relatedness values between strain DCY100T and Microbacterium ginsengisoli KCTC 19189T, Microbacterium lacus JCM 15575T and Microbacterium invictum DSM 19600T were 36.2 ± 0.4, 22.0 ± 3.0 and 15.3 ± 1.8 %, respectively. On the basis of phenotypic, chemotaxonomic and genotypic analyses, the isolate is classified as a representative of a novel species in the genus Microbacterium, for which the name Microbacterium rhizomatis DCY100T is proposed. The type strain is DCY100T ( = KCTC 39529T = JCM 30598T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2689-2692 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Soon-Wo Kwon ◽  
...  

A Gram-negative, obligately aerobic, rod-shaped bacterium was isolated from greenhouse soil used to cultivate lettuce. The strain, GH2-10T, was characterized on the basis of phenotypic and genotypic data. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Devosia, with highest sequence similarity (98.5 %) to Devosia riboflavina IFO 13584T. Sequence similarities with other strains tested were below 97.0 %. Strain GH2-10T had Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 59.5 mol%. The results of DNA–DNA hybridization experiments (47 % relatedness between D. riboflavina DSM 7230T and strain GH2-10T) and physiological and biochemical tests suggested that strain GH2-10T represents a novel species of the genus Devosia, for which the name Devosia soli sp. nov. is proposed. The type strain is GH2-10T (=KACC 11509T=DSM 17780T).


2005 ◽  
Vol 55 (1) ◽  
pp. 463-466 ◽  
Author(s):  
Wen-Jun Li ◽  
Hua-Hong Chen ◽  
Chang-Jin Kim ◽  
Yu-Qin Zhang ◽  
Dong-Jin Park ◽  
...  

Two novel actinobacteria isolates, designated YIM 70009T and YIM 70081T, were characterized in order to determine their taxonomic position. Cells of strains YIM 70009T and YIM 70081T were cocci, although only the latter were motile. The G+C contents of their DNAs were 64·0 and 64·5 mol%, respectively. On the basis of chemotaxonomic characteristics and 16S rRNA gene sequence analysis, the two isolates were classified in the genus Nesterenkonia. DNA–DNA hybridization and comparison of phenotypic characteristics revealed that strains YIM 70009T and YIM 70081T differed from each other and from known species. Therefore, it is proposed that they represent two separate novel species of the genus Nesterenkonia: Nesterenkonia sandarakina sp. nov. (type strain, YIM 70009T=CCTCC AA 203007T=DSM 15664T=KCTC 19011T) and Nesterenkonia lutea sp. nov. (type strain, YIM 70081T=CCTCC AA 203010T=DSM 15666T=KCTC 19013T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1762-1764 ◽  
Author(s):  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana ◽  
J. F. Imhoff

A Gram-negative, rod-shaped, phototrophic bacterium (JA181T) was isolated from a tidal water sample. On the basis of 16S rRNA gene sequence similarity, strain JA181T was shown to belong to the class Alphaproteobacteria, most closely related to Rhodovulum sulfidophilum (97.8 % similarity to the type strain), Rhodovulum adriaticum (93 %), Rhodovulum robiginosum (93 %), Rhodovulum iodosum (94 %), Rhodovulum imhoffii (94 %), Rhodovulum strictum (95 %), Rhodovulum euryhalinum (94.6 %) and Rhodovulum marinum (94.6 %). DNA–DNA hybridization with Rdv. sulfidophilum DSM 1374T (relatedness of 39 % with strain JA181T) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain JA181T from the eight Rhodovulum species with validly published names. Strain JA181T therefore represents a novel species, for which the name Rhodovulum visakhapatnamense sp. nov. is proposed (type strain JA181T =JCM 13531T =ATCC BAA-1274T =DSM 17937T).


2007 ◽  
Vol 57 (5) ◽  
pp. 923-931 ◽  
Author(s):  
Beatriz Cámara ◽  
Carsten Strömpl ◽  
Susanne Verbarg ◽  
Cathrin Spröer ◽  
Dietmar H. Pieper ◽  
...  

Three bacterial strains, designated MT1T, RW10T and IpA-2T, had been isolated previously for their ability to degrade chlorosalicylates or isopimaric acid. 16S rRNA gene sequence analysis demonstrated that these bacteria are related to species of the genus Pseudomonas. Analysis of the results of DNA–DNA hybridization with several close phylogenetic neighbours revealed a low level of hybridization (less than 57 %). On the basis of phenotypic characteristics, phylogenetic analysis, DNA–DNA relatedness data and chemotaxonomic analysis, it is concluded that these isolates represent separate novel species, for which the names Pseudomonas reinekei sp. nov. (type strain MT1T =DSM 18361T=CCUG 53116T), Pseudomonas moorei sp. nov. (type strain RW10T =DSM 12647T=CCUG 53114T) and Pseudomonas mohnii sp. nov. (type strain IpA-2T =DSM 18327T=CCUG 53115T) are proposed.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3170-3174 ◽  
Author(s):  
Soo-Jin Kim ◽  
Jae-Hyung Ahn ◽  
Hang-Yeon Weon ◽  
Jun-Muk Lim ◽  
Song-Gun Kim ◽  
...  

One bacterial strain, designated 5GH38-5T, which was characterized as aerobic, Gram-staining-negative, non-flagellated rods, was isolated from a soil sample from a greenhouse in Sangju region, Republic of Korea. It grew at temperatures of 15–45 °C, pH 5.0–9.0 and NaCl concentrations (w/v) of 0–3.0 %. 16S rRNA gene sequence analysis showed the strain was closely related to Pseudoxanthomonas kaohsiungensis J36T (97.3 %), Pseudoxanthomonas suwonensis 4M1T (96.8 %), Pseudoxanthomonas daejeonensis TR6-08T (96.7 %) and Pseudoxanthomonas kalamensis JA40T (96.7 %). Its major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. The predominant ubiquinone was Q-8. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 71.1 mol%. The DNA–DNA hybridization value between strain 5GH38-5T and P. kaohsiungensis J36T was less than 70 %. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain 5GH38-5T could be clearly distinguished from closely related members of the genus Pseudoxanthomonas. Therefore, the results of this study indicated the existence of a novel species of the genus Pseudoxanthomonas, for which we propose the name Pseudoxanthomonas sangjuensis sp. nov., with strain 5GH38-5T ( = KACC 16961T = DSM 28345T = JCM 19948T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document