scholarly journals Description of Diutina gen. nov., Diutina siamensis, f.a. sp. nov., and reassignment of Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida ranongensis, Candida rugosa and Candida scorzettiae to the genus Diutina

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4701-4709 ◽  
Author(s):  
Pannida Khunnamwong ◽  
Noppon Lertwattanasakul ◽  
Sasitorn Jindamorakot ◽  
Savitree Limtong ◽  
Marc-André Lachance

Three strains (DMKU-RE28, DMKU-RE43T and DMKU-RE123) of a novel anamorphic yeast species were isolated from rice leaf tissue collected in Thailand. DNA sequence analysis demonstrated that the species forms a sister pair with Candida ranongensis CBS 10861T but differs by 24–30 substitutions in the LSU rRNA gene D1/D2 domains and 30–35 substitutions in the ITS region. A phylogenetic analysis based on both the small and the large rRNA gene subunits confirmed this connection and demonstrated the presence of a clade that also includes Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida rugosa and Candida scorzettiae. The clade is not closely affiliated to any known teleomorphic genus, and forms a well-separated lineage from currently recognized genera of the Saccharomycetales. Hence, the genus Diutina gen. nov. is proposed to accommodate members of the clade, including Diutina siamensis f.a. sp. nov. and the preceding seven Candida species. The type strain is DMKU-RE43T ( = CBS 13388T = BCC 61183T = NBRC 109695T).

2020 ◽  
Vol 70 (11) ◽  
pp. 5665-5670
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchuan ◽  
Chanita Boonmak ◽  
Pannida Khunnamwong ◽  
Noémie Jacques ◽  
...  

Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).


2011 ◽  
Vol 61 (2) ◽  
pp. 454-461 ◽  
Author(s):  
Somjit Am-In ◽  
Savitree Limtong ◽  
Wichien Yongmanitchai ◽  
Sasitorn Jindamorakot

Five strains (RV5T, RV140, R31T, RS17 and RS28T) representing three novel anamorphic ascomycetous yeast species were isolated by membrane filtration from estuarine waters collected from a mangrove forest in Laem Son National Park, Ranong Province, Thailand, on different occasions. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and the internal transcribed spacer region and phylogenetic analysis, three strains were found to represent two novel Candida species. Two strains (RV5T and RV140) represented a single novel species, for which the name Candida laemsonensis sp. nov. is proposed. The type strain is RV5T (=BCC 35154T =NBRC 105873T =CBS 11419T). Strain R31T was assigned to a novel species that was named Candida andamanensis sp. nov. (type strain R31T =BCC 25965T =NBRC 103862T =CBS 10859T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and phylogenetic analysis, strains RS17 and RS28T represented another novel species of Candida, for which the name Candida ranongensis sp. nov. is proposed. The type strain is RS28T (=BCC 25964T =NBRC 103861T =CBS 10861T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1297-1303 ◽  
Author(s):  
Rungluk Kaewwichian ◽  
Sasitorn Jindamorakot ◽  
Somjit Am-In ◽  
Matthias Sipiczki ◽  
Savitree Limtong

Eight strains, representing two novel anamorphic yeast species, consisted of five strains isolated from the external surfaces of rice leaves (DMKU-RP72T, DMKU-RP109, DMKU-RP119, YE-124 and YE-156) and one from a corn leaf (DMKU-CP430T)4 collected in Thailand, and one strain isolated from each of a composite flower (11-1114) and a fallen dead leaf (12-301); the latter two were collected in Belize. On the basis of sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer (ITS) region, they were suggested to be two novel species of the genus Hannaella. Seven strains (DMKU-RP72T, DMKU-RP109, DMKU-RP119, YE-124, YE-156, 11-1114 and 12-301) differed from each other by 0–3 nt substitutions in the D1/D2 region and by 0–1 nt substitutions in the ITS region. In terms of pairwise sequence similarities of the D1/D2 region these seven strains were closest to Hannaella zeae, but with 1.2–1.7 % (7–9) nucleotide substitutions. The sequences of the ITS region of these seven strains differed from H. zeae by 3.7–3.9 % (16–17) nucleotide substitutions. Therefore, they were assigned to a single novel species and the name Hannaella siamensis sp. nov. has been proposed. The type strain is DMKU-RP72T ( = BCC 69493T = NBRC 110425T = CBS 13533T). Strain DMKU-CP430T represents the second novel species and was also most closely related to H. zeae, but with 1.0 % (6) nucleotide substitutions in the D1/D2 region and 3.2 % (14) nucleotide substitutions in the ITS region. It was assigned to the proposed novel species, Hannaella phetchabunensis sp. nov. (type strain DMKU-CP430T = BCC 69492T = NBRC 110424T = CBS 13386T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3053-3057 ◽  
Author(s):  
Pirapan Polburee ◽  
Wichien Yongmanitchai ◽  
Takao Ohashi ◽  
Kazuhito Fujiyama ◽  
Savitree Limtong

Two strains, DMKU-UbN24(1)T and DMKU-CPN24(1), of a novel yeast species were obtained from soil and palm oil fruit, respectively, collected in Thailand by an enrichment isolation technique using a nitrogen-limited medium containing glycerol as the sole source of carbon. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the two strains were found to represent a novel species of the genus Barnettozyma although the formation of ascospores was not observed. The novel species was related most closely to the type strain of Candida montana but differed by 5.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and by 10.3–10.5 % nucleotide substitutions in the ITS region. The name Barnettozyma siamensis f.a., sp. nov. is proposed. The type strain is DMKU-UbN24(1)T ( = BCC 61189T = NBRC 109701T = CBS 13392T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2135-2140 ◽  
Author(s):  
Janjira Surussawadee ◽  
Sasitorn Jindamorakot ◽  
Takashi Nakase ◽  
Ching-Fu Lee ◽  
Savitree Limtong

Five strains representing one novel anamorphic yeast species were isolated from plant leaves collected in Thailand (strains DMKU-SP186T, ST-111 and ST-201) and Taiwan (strains FN20L02 and SM13L16). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, they were assigned to a single novel species of the genus Hannaella. The sequences of the D1/D2 regions of the LSU rRNA genes of four of the strains (DMKU-SP186T, ST-111, FN20L02 and SM13L16) were identical, while differing from strain ST-201 by 2 substitutions and 2 gaps. The nucleotide sequence of the ITS regions of the five strains differed from each other by between 0 and 3 nucleotide substitutions. The novel species was most closely related to Hannaella luteola, but showed 1.0–1.3 % nucleotide substitutions (between 6 substitutions out of 568–606 nt and 8 substitutions, and 2 gaps out of 597 nt) in the D1/D2 region of the LSU rRNA gene and 1.4–2.0 % nucleotide substitutions (6–9 substitutions out of 435 nt) in the ITS region. Ballistospores were produced by three of the strains on cornmeal agar at 15 and 20 °C after 4 weeks, while H. luteola did not produce ballistospores. The name Hannaella phyllophila sp. nov. is proposed. The type strain is DMKU-SP186T ( = BCC 69500T = NBRC 110428T = CBS 13921T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 266-270 ◽  
Author(s):  
Rungluk Kaewwichian ◽  
Savitree Limtong

Strain DMKU-RK467T, representing a novel yeast species, was isolated from the external surface of sugar cane leaves collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region, strain DMKU-RK467T was assigned to a novel species of the genus Nakazawaea. The novel species was related most closely to the type strain of Candida wickerhamii but they differed by 1.9 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and by 5.2 % nucleotide substitutions in the ITS region. The name Nakazawaea siamensis f.a., sp. nov. is proposed (type strain DMKU-RK467T = BCC 50734T = NBRC 108903T = CBS 12569T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3115-3123 ◽  
Author(s):  
Neža Čadež ◽  
Dénes Dlauchy ◽  
Peter Raspor ◽  
Gábor Péter

Nine methanol-assimilating yeast strains isolated from olive oil sediments in Slovenia, extra virgin olive oil from Italy and rotten wood collected in Hungary were found to form three genetically separated groups, distinct from the currently recognized yeast species. Sequence analysis from genes of the small subunit (SSU) rRNA, internal transcribed spacer region/5.8S rRNA, large subunit (LSU) rRNA D1/D2 domains and translational elongation factor-1α (EF-1α) revealed that the three closely related groups represent three different undescribed yeast species. Sequence analysis of the LSU rRNA gene D1/D2 domains placed the novel species in the Ogataea clade. The three novel species are designated as Ogataea kolombanensis sp. nov. (type strain: ZIM 2322T = CBS 12778T = NRRL Y-63657T), Ogataea histrianica sp. nov. (type strain: ZIM 2463T = CBS 12779T = NRRL Y-63658T) and Ogataea deakii sp. nov. (type strain: NCAIM Y.01896T = CBS 12735T = NRRL Y-63656T).


Sign in / Sign up

Export Citation Format

Share Document