scholarly journals Description of Luteithermobacter gelatinilyticus gen. nov., sp. nov., and Paremcibacter congregatus gen. nov., comb. nov. via reclassification of the genus Emcibacter

2020 ◽  
Vol 70 (8) ◽  
pp. 4691-4697 ◽  
Author(s):  
Mi-Jeong Park ◽  
Teddy Namirimu ◽  
Sung-Hyun Yang ◽  
Kae Kyoung Kwon

Strain MEBiC09520T, which was isolated from a tidal sediment in Incheon, Korea, is a pale yellow, rod-shaped bacterium, cells of which are 0.4–0.5 µm in width and 1.5–2 µm in length. Strain MEBiC09520T shared 95.17 and 92.57% 16S rRNA gene sequence similarity with Emcibacter nanhaiensis and E. congregatus , respectively. It grew optimally at pH 6.0, at 55 °C and with 2.5–3.5% (w/v) NaCl. Its polar lipid components included phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), an unidentified phospholipid (PL), three unidentified aminolipids (ALs) and two unidentified lipids (L). The fatty acids C16:0, C19:0 cyclo ω8c, C14:0 2-OH and summed feature 8 (C18:1ω7c and/or C18:1ω6c) were predominantly present in its cell wall. Strain MEBiC09520T was thermophilic, while E. nanhaiensis and E. congregatus were mesophilic. Although E. nanhaiensis showed no nitrate reduction activity, MEBiC09520T and E. congregatus showed a positive reaction. These strains differed in carbohydrate utilization. In particular, E. congregatus was able to thrive on various carbohydrate substrates as compared to the other strains. The average nucleotide identity value was 69.92% between strain MEBiC09520T and E. congregatus ZYLT, 70.38% between E. congregatus ZYLT and E. nanhaiensis HTCJW17T, and 72.83% between strain MEBiC09520 and E. nanhaiensis HTCJW17T. Considering these differences, strain MEBiC09520T (=KCCM 43320T=MCCC 1K03920T) is suggested to represent and novel species of a new genus, Luteithermobacter gelatinilyticus gen. nov., sp. nov., and E. congregatus should be reclassified as Paremcibacter congregatus gen. nov., comb. nov.

Author(s):  
Sang-Ah Lee ◽  
Ve Van Le ◽  
So-Ra Ko ◽  
Nakyeong Lee ◽  
Hee-Mock Oh ◽  
...  

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated HC2T, was isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Strain HC2T was able to grow at pH 4.5–8.0, at 4–32 °C and in the presence of 0–2 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain HC2T was affiliated to the genus Mucilaginibacter and shared the highest sequence similarity with Mucilaginibacter lappiensis ANJKI2T (98.20 %) and Mucilaginibacter sabulilitoris SMS-12T (98.06 %). Strain HC2T contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0 as the major fatty acids (>10.0 %). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, two unidentified aminolipids and four unidentified lipids. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G+C content was 42.0 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain HC2T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter inviolabilis sp. nov. is proposed. The type strain is HC2T (=KCTC 82084T=JCM 34116T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 469-474 ◽  
Author(s):  
Ying Liu ◽  
Liang-Zi Liu ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Fang-Jun Qi ◽  
...  

A Gram-stain-negative, strictly aerobic and heterotrophic bacterial strain, designed strain D1T, was isolated from a recirculating mariculture system in Tianjin, China. Its taxonomic position was determined using a polyphasic approach. Cells of strain D1T were non-flagellated short rods, 0.3–0.5 µm wide and 0.5–1.0 µm long. Growth was observed at 15–30 °C (optimum, 25 °C), at pH 5.5–9.0 (optimum, pH 6.5–7.0) and in the presence of 1–8 % (w/v) NaCl (optimum, 2–3 %). Cells contained carotenoid pigments but not flexirubin-type pigments. Strain D1T contained MK-6 as the sole menaquinone and phosphatidylethanolamine (PE) as the sole phospholipid and four unidentified lipids. The major cellular fatty acids (>10 %) were iso-C15 : 0 (23.2 %), iso-C17 : 0 3-OH (15.2 %), C16 : 1ω7c/C16 : 1ω6c (14.3 %), iso-C15 : 0 3-OH (13.5 %) and iso-C15 : 1 G (10.8 %). 16S rRNA gene sequence analyses indicated that strain D1T belonged to the family Flavobacteriaceae and showed closest phylogenetic relationship to the genus Lutibacter , with highest sequence similarity to Lutibacter aestuarii MA-My1T (92.2 %). The DNA G+C content of strain D1T was 35.9 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D1T was considered to represent a novel species in a new genus of the family Flavobacteriaceae , for which the name Wenyingzhuangia marina gen. nov., sp. nov. is proposed. The type strain of the type species is D1T ( = CGMCC 1.12162T = JCM 18494T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 3019-3023 ◽  
Author(s):  
Raja Lakhal ◽  
Nathalie Pradel ◽  
Anne Postec ◽  
Moktar Hamdi ◽  
Bernard Ollivier ◽  
...  

A novel obligately anaerobic, non-spore-forming, rod-shaped mesophilic, halophilic, Gram-stain-negative bacterium, was isolated from sediments of Guaymas Basin. The strain, designated Ra1766G1T, grew at 20–40 °C (optimum, 30–35 °C) and at pH 6.0–8.0 (optimum, pH 6.5–7.5). It required 0.5–7.5 % NaCl (optimum, 2–3 %) for growth. Sulfate, thiosulfate, elemental sulfur, sulfite, fumarate, nitrate and nitrite were not used as terminal electron acceptors. Strain Ra1766G1T used cellobiose, glucose, mannose, maltose, arabinose, raffinose, galactose, ribose, sucrose, pyruvate and xylose as electron donors. The main fermentation product from glucose metabolism was acetate. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso DMA-C15 : 0 and C16 : 0. The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, iso-DMA-C15 : 0 glycolipids and phospholipids. The G+C content of the genomic DNA was 31.2 mol%. The closest phylogenetic relatives of strain Ra1766G1T were Natranaerovirga pectinivora AP3T (92.4 % 16S rRNA gene sequence similarity), Natranaerovirga hydrolytica APP2T(90.2 %) and Defluviitalea saccharophila 6LT2T (88.9 %). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766G1T represents a novel species of a new genus for which the name Vallitalea guaymasensis is proposed. The type strain of the type species is Ra1766G1T ( = DSM 24848T = JCM17997T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yuanyuan Tian ◽  
Chuanyu Han ◽  
Jiangmeihui Hu ◽  
Junwei Zhao ◽  
Chen Zhang ◽  
...  

A novel actinomycete, designated strain NEAU-TCZ24T, was isolated from soil and characterized using a polyphasic approach. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus Cellulomonas and formed a stable clade with its closest relatives Cellulomonas terrae JCM 14899T (98.4 % 16S rRNA gene sequence similarity), Cellulomonas xylanilytica JCM 14281T (97.9 %) and Cellulomonas humilata JCM 11945T (97.7 %). The major menaquinones were identified as MK-9(H4) and MK-8(H4). The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositolmannoside, a ninhydrin-positiveglycolipid, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15 : 0, C18 : 1ω9c, C16 : 0 and anteiso-C17 : 0. Moreover, morphological and chemotaxonomic properties of NEAU-TCZ24T also confirmed the affiliation of the isolate to the genus Cellulomonas . However, multilocus sequence analysis based on five other house-keeping genes (gyrB, rpoB, recA, relA and atpD), DNA–DNA relatedness, physiological and biochemical data indicated that NEAU-TCZ24T could be distinguished from its closest relatives. Therefore, it is proposed that NEAU-TCZ24T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas rhizosphaerae sp. nov. is proposed. The type strain is NEAU-TCZ24T (=CCTCC AA 2018042T=JCM 32383T).


Author(s):  
Auttaporn Booncharoen ◽  
Wonnop Visessanguan ◽  
Nattakorn Kuncharoen ◽  
Supalurk Yiamsombut ◽  
Pannita Santiyanont ◽  
...  

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained l-Orn–d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus , for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Author(s):  
Soon Dong Lee ◽  
In Seop Kim

Two novel actinobacterial strains, designated C9-5T and C3-43, were isolated from soil samples of a cave in Jeju Island, Republic of Korea, and subjected to taxonomic study by a polyphasic approach. The organisms exhibited a typical rod–coccus developmental cycle during growth and grew at 10–30 °C, pH 5–9 and 0–3 % (w/v) NaCl. In 92 single-copy core gene sequence analysis, strain C9-5T was loosely associated with Rhodococcus tukisamuensis , albeit sharing low 16S rRNA gene sequence similarity (97.4 %). A combination of morphological and chemotaxonomic characteristics supported assignment with the genus Rhodococcus . With respect to 16S rRNA gene sequence similarity, the novel isolates showed the highest identity to the type strain of Rhodococcus subtropicus (98.7 % sequence similarity), followed by Rhodococcus olei (98.5 %) and Rhodococcus pedocola (98.4 %).The average nucleotide identity and digital DNA–DNA hybridization values between strain C9-5T and members of the genus Rhodococcus were ≤81.5 and ≤37.1 %, respectively. A set of physiological and chemotaxonomic properties together with overall genomic relatedness differentiated the novel isolates from members of the genus Rhodococcus , for which the name Rhodococcus spelaei sp. nov. is proposed. The type strain is C9-5T (=KACC 19822T=DSM 107558T). Based on genome analysis performed here, it is also proposed that Rhodococcus biphenylivorans Su et al. 2015 is a later heterotypic synonym of Rhodococcus pyridinivorans Yoon et al. 2000, Rhodococcus qingshengii Xu et al. 2007 and Rhodococcus baikonurensis Li et al. 2004 are later heterotypic synonyms of Rhodococcus erythropolis (Gray and Thornton 1928) Goodfellow and Alderson 1979 (Approved Lists 1980), and Rhodococcus percolatus Briglia et al. 1996 and Rhodococcus imtechensis Ghosh et al. 2006 are later heterotypic synonyms of Rhodococcus opacus Klatte et al. 1995.


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


Author(s):  
Ji Young Choi ◽  
Seung-Hyeon Choi ◽  
Jam-Eon Park ◽  
Ji-Sun Kim ◽  
Jiyoung Lee ◽  
...  

An obligately anaerobic, non-motile, Gram-negative and rod-shaped strain (AGMB03916T) was isolated from faeces of a 2-week-old piglet raised at the National Institute of Animal Science in Wanju, Republic of Korea. Growth of strain AGMB03916T occurred at 30–45 °C (optimum, 37 °C), at pH 6–9 (optimum, pH 8) and in the presence of 0.5–1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence analyses, strain AGMB03916T was closely related to two validly published species of the genus Phocaeicola , Phocaeicola plebeius and Phocaeicola coprocola . The 16S rRNA gene sequence similarity of strain AGMB03916T compared to P. plebeius M12T (=KCTC 5793T) and P. coprocola M16T (=KCTC 5443T) were 96.3 and 95.0 %, respectively. The genomic DNA G+C content of strain AGMB03916T was 46.4 mol%. The average nucleotide identity values between strain AGMB03916T and the reference strains were 74.9–78.5 %. Cells were able to utilize d-glucose, lactose, sucrose, maltose, salicin, aesculin hydrolysis, cellobiose and raffinose. The major end product of metabolism was acetate. The major cellular fatty acids (>10 %) of the isolate were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, C16 : 0 3-OH and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA). On the basis of the genotypic, biochemical, chemotaxonomic, phenotypic and phylogenetic data, strain AGMB03916T represents a novel species of the genus Phocaeicola , for which the name Phocaeicola faecicola sp. nov. is proposed. The type strain is AGMB03916T (=KCTC 25014T=GDMCC 1.2574T).


Sign in / Sign up

Export Citation Format

Share Document