scholarly journals Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chang-Sang Cho ◽  
Jae-Hwan Sa ◽  
Ki-Kyo Lim ◽  
Tae-Mi Youk ◽  
Seung-Jin Kim ◽  
...  

This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ) and 4.0 kg/TJ (2.9–5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Seehyung Lee ◽  
Jinsu Kim ◽  
Jeongwoo Lee ◽  
Eui-Chan Jeon

In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea’s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.


Author(s):  
Han-Ping Chen ◽  
Xian-Hua Wang ◽  
Shi-Hong Zhang ◽  
De-Chang Liu ◽  
Yu-Hua Lai ◽  
...  

In China, there are a large number of pulverized coal-fired industrial boilers, whose steam capacities are usually relatively small. These boilers can burn only high-grade coal and have low combustion efficiency. Furthermore, the combustion emissions, such as SO2 and NOx, pollute the environment severely. Therefore it is very important and urgent to adopt economically efficient and environmentally friendly technologies to retrofit these boilers. At the same time, there are many industrial wastes, such as bagasse, wood waste, rubbish, petroleum coke and so on, need burning disposal in China. Fluidized bed combustion technology is a kind of clear combustion technology, which has many advantages, such as excellence fuel flexibility, high combustion efficiency, low pollutant emission and good turndown capability etc. So, adopting fluidized bed combustion technology, retrofitting pulverized coal-fired boiler into fluidized bed boiler can realize pure burning various wastes or co-firing with coal, which should have great economic benefits and social benefits. And the application prospect of the method is also extensive. The State Key Laboratory of Coal Combustion has successfully retrofitted a 25t/h pulverized coal-fired boiler into circulating fluidized bed boiler with in-bed tubes and downward exhaust cyclone. The retrofitted boiler can burn mixture of coal and bagasse and the steam capacity reaches 35t/h. This paper presents the retrofitting measures and the operation status of the boiler after retrofitting.


1994 ◽  
Vol 116 (3) ◽  
pp. 462-467 ◽  
Author(s):  
P. Basu ◽  
S. Mitra

The design of a boiler using a new technology, i.e., circulating fluidized bed combustion, requires a considerable amount of expertise, which is a combination of experience, knowledge of the subject, and intuition. Boiler vendors, who are required to prepare a large number of proposals, rely heavily on the the skill and judgment of their senior (expert) designers. An artificial intelligence based expert system can greatly simplify this task. This system can assist expert designers to store their experience and decision-making skill through the code of a computer program, which remains intact and ready to apply their skill uniformly and rapidly to all designs when required. This may allow novice designers to carry out routine proposal designs, freeing the experts to improve current designs. The present paper gives an illustration of the use of expert systems to the design of only one aspect of the furnace, which is furnace cross section. It shows that in addition to the standard method of determining the furnace area from the fluidization, the design can take advantage of previous experience, which lists grate heat release rate and other relevant parameters. The expert system also modifies the calculated value to meet different concerns of the boiler purchaser and/or his consultants. Finally the expert develops a compromise of different considerations and requirements with importance attached to them. The paper also shows how the design will change when the importance attached to a particular constraint is relaxed.


2019 ◽  
Vol 10 (3) ◽  
pp. 221-226
Author(s):  
Jae Hun Jeong ◽  
Joon Young Roh ◽  
Hwa Su Lee ◽  
Eui Chan Jeon

Author(s):  
Zhengshun Wu ◽  
Hanping Chen ◽  
Dechang Liu ◽  
Jie Wang ◽  
Chuangzhi Wu ◽  
...  

The operation performance of circulating fluidized bed combustion (CFBC) boiler was studied in this paper. The experimental results indicate that the load of CFB boiler has linear relation with bed temperature and bed material height of operation. By multiple regression analysis, the relation of the load of CFB boiler with bed temperature and bed material height of operation can be expressed as a formula. The suitable temperature and the bed material height corresponding to the load of CFB boiler can be found using the formula; the problem of the boiler to be blindly operated can be reduced in practice.


2003 ◽  
Vol 7 (2) ◽  
pp. 33-42
Author(s):  
Emmanuel Kakaras ◽  
Panagiotis Grammelis ◽  
George Skodras ◽  
Panagiotis Vourliotis

The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC) facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA) and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.


Sign in / Sign up

Export Citation Format

Share Document