brown coal
Recently Published Documents


TOTAL DOCUMENTS

2005
(FIVE YEARS 234)

H-INDEX

62
(FIVE YEARS 8)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123170
Author(s):  
Renze He ◽  
Hui Liu ◽  
Qiuxiang Lu ◽  
Yanwei Zhao ◽  
Xianyang Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 217 ◽  
pp. 105264
Author(s):  
Irina V. Mikheeva ◽  
Vladimir A. Androkhanov

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Ivan Semenkov ◽  
Anna Sharapova ◽  
Sergey Lednev ◽  
Natalia Yudina ◽  
Andrey Karpachevskiy ◽  
...  

Significant environmental impacts of mining activities connected with high-sulfur materials result from the production of acid mine drainage and potentially toxic elements, which easily migrate to adjacent ecosystems due to the typical absence of vegetation on spoil heaps and toeslope talus mantle. In this paper, we present the results of the first comprehensive study of the ecosystems affected by acidic and metal-enriched (Al, Ca, Co, Cu, Fe, Mg, Mn, Ni, and Zn) mine drainage conducted at spoil heaps and adjacent talus mantle under semihumid climate conditions within the Moscow Brown Coal Basin (Central Russian Upland, Tula Region, Russia). A total of 162 samples were collected, including 98 soil samples, 42 surface water samples, and 22 plant samples (aerial tissues of birch). Coal talus mantle materials of Regosols were characterized by the increased concentration of water-soluble Ca, K, Mg, and S, and all mobile fractions of Al, Co, S, and Zn. The chemical composition of birch samples within the zones affected by acid mine drainage differed insignificantly from those in the unpolluted ecosystems with black soils, due to the high tolerance of birch to such conditions. Differences between the affected and undisturbed sites in terms of the chemical composition decreased in the following order: waters > soils > plants. The geochemical characterization of plants and soils in coal mining areas is essential for the mitigation of negative consequences of mining activities.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 71
Author(s):  
Shi Yu ◽  
Ruizhi Chu ◽  
Xiao Li ◽  
Guoguang Wu ◽  
Xianliang Meng

In this manuscript, we use a combination of Car–Parrinello molecular dynamics (CPMD) and ReaxFF reactive molecular dynamics (ReaxFF-MD) simulations to study the brown coal–water interactions and coal oxidation. Our Car–Parrinello molecular dynamics simulation results reveal that hydrogen bonds dominate the water adsorption process, and oxygen-containing functional groups such as carboxyl play an important role in the interaction between brown coal and water. The discrepancy in hydrogen bonds formation between our simulation results by ab initio molecular dynamics (CPMD) and that by ReaxFF-MD indicates that the ReaxFF force field is not capable of accurately describing the diffusive behaviors of water on lignite at low temperatures. The oxidations of brown coal for both fuel rich and fuel lean conditions at various temperatures were investigated using ReaxFF-MD simulations through which the generation rates of major products were obtained. In addition, it was observed that the density decrease significantly enhances the generation of gaseous products due to the entropy gain by reducing system density. Although the ReaxFF-MD simulation of complete coal combustion process is limited to high temperatures, the combined CPMD and ReaxFF-MD simulations allow us to examine the correlation between water adsorption on brown coal and the initial stage of coal oxidation.


2021 ◽  
Vol 116 ◽  
pp. 123-130
Author(s):  
Mateusz Niedbała

The effect of the use of a soil improver based on waste brown coal on the enzymatic activity of soil in the cultivation of Paulownia hybrids (Paulownia Siebold & Zuccarini, 1835). An important element in controlling the condition of the soil and the plants grown on it are tests of the enzymatic activity of the soil matrix. One of the greatest advantages of using enzyme tests is the ability to make an assessment that also includes other non-measurable factors that affect soil health and condition. The diagnosed changes in soil enzymatic activity are the best parameter for determining the biochemical processes taking place there. This article describes the enzymatic activity of lessive soils on which the Paulownia hybrid variety is cultivated and a soil improver based on waste brown coal is used


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 511
Author(s):  
Roger Hu ◽  
Stuart D. C. Walsh

The stability of open-pit brown-coal mines is affected by the manner in which water is transmitted or retained within their slopes. This in turn is a function of the in-situ fracture network at those mines. Fracture networks in real mines exhibit significant degrees of heterogeneity; encompassing a wide range of apertures, inter-fracture separations, and orientations. While each of these factors plays a role in determining fluid movement, over the scale of a mine it is often impractical to precisely measure, let alone simulate, the behaviour of each fracture. Accordingly, effective continuum models capable of representing the bulk effects of the fracture network are needed to understand the movement of fluid within these slopes. This article presents an analysis of the fracture distribution within the slopes of a brown coal mine and outlines a model to capture the effects on the bulk permeability. A stress-dependent effective-fracture-permeability model is introduced that captures the effects of the fracture apertures, spacing, and orientation. We discuss how this model captures the fracture heterogeneity and the effects of changing stress conditions on fluid flow. The fracture network data and the results from the effective permeability model demonstrate that in many cases slope permeability is dominated by highly permeable but low-probability fractures. These results highlight the need for models capable of capturing the effects of heterogeneity and uncertainty on the slope behaviour.


2021 ◽  
Author(s):  
I.A. Potapova ◽  
E.V. Nielina ◽  
N.V. Prokhorova

Humic substances represent the most extensive and reactive class of natural compounds. A more nature-saving way is to obtain humus substances from solid combustible minerals and waste from their processing. The ability of these compounds to form stable complexes with heavy metals, which increases with their directed chemical modification, has been experimentally confirmed. The effectiveness of the phenol-formaldehyde condensation method for the modification of initial humus substances has been confirmed. The interaction of humic and himatomelanic acids with formaldehyde leads to an increase in sorption activity in comparison with the initial humic acids with respect to heavy metals. This aspect has been studied and confirmed in model experiments with copper ions. Key words: humic substances, brown coal, humic and himatomelanic acids, directed chemical modification, hydroxymethyl (methyl) derivatives, heavy metals, copper ions, complex formation.


2021 ◽  
Vol 5 ◽  
Author(s):  
S. V. Eswaran

This review article highlights alternative innovative uses of soil, brown coal, and composted solid city waste. The latter leads to environmental pollution, which can be addressed by using these materials to generate value-added products. Humic substances present there can be isolated in large amounts and used in diverse fields like sustainable agriculture, horticulture, biomedicine, and materials science. These have been shown to be non-toxic and safe for humans and serve as growth promotants for plants and to cure stomach ailments. The recent discovery of their antiviral/anti-HIV-AIDS activity is described here in some detail. The use of humic substances for making dye-sensitized solar cells (DSSCs) and for preparing a catalyst for reduction and for oxidation processes is also highlighted. Such innovative uses of humic substances can lead to environmental cleaning and positively impact climate change.


2021 ◽  
Vol 11 (23) ◽  
pp. 11531
Author(s):  
Petr Belousov ◽  
Anna Semenkova ◽  
Yulia Izosimova ◽  
Inna Tolpeshta ◽  
Anna Romanchuk ◽  
...  

The present study examines the sorption of Cs (I) and Sr (II) on organic sorbents in the pH range from 2 to 10, as well as the mechanisms of their binding. In order to determine the influence of the physical properties and the quantity of functional groups of the organic sorbents on sorption, experiments were carried out on organic materials of varying degrees of metamorphism: high-moor peat, hard and brown coals and shungite. A detailed description of their mineral composition, cation exchange capacity, buffering capacity and elemental composition of sorbents is provided. XRD, XRF, SEM and BET adsorption methods were used for assaying. As a result of the conducted research, it can be concluded that Sr (II) showed a higher sorption per unit specific surface area than Cs (I) in the studied range of concentrations and pH values. Sr (II) sorption decreases in the following order: high-moor peat > brown coal > shungite > hard coal. The sorption of Cs (I) is highest on brown coal and lesser for high-moor peat, shungite and hard coal. It is suggested that Cs (I) and Sr (II) can be fixed on carboxyl functional groups and Cs (I), possibly, in insignificant amounts on phenolic hydroxyls of all four studied organic sorbents.


Sign in / Sign up

Export Citation Format

Share Document