scholarly journals Reproductive Isolation through Experimental Manipulation of Sexually Antagonistic Coevolution in Drosophila melanogaster

2016 ◽  
Author(s):  
Syed Zeeshan Ali ◽  
Martik Chatterjee ◽  
Manas Arun Samant ◽  
Nagaraj Guru Prasad

AbstractPromiscuity can drive the evolution of sexual conflict before and after mating occurs. Post-mating, the male ejaculate can selfishly manipulate female physiology leading to a chemical arms race between the sexes. Theory suggests that drift and sexually antagonistic coevolution can cause allopatric populations to evolve different chemical interactions between the sexes, thereby leading to postmating reproductive barriers and speciation. There is, however, little empirical evidence supporting this form of speciation. We tested this theory by creating an experimental evolutionary model of Drosophila melanogaster populations undergoing different levels of interlocus sexual conflict. We found that allopatric populations under elevated sexual conflict show assortative mating indicating premating reproductive isolation. Further, these allopatric populations also show reduced copulation duration and sperm defense ability when mating happens between individuals between individuals across populations compared to that within the same population, indicating postmating prezygotic isolation. Sexual conflict can cause reproductive isolation in allopatric populations through the coevolution of chemical (postmating prezygotic) as well as behavioural (premating) interaction between the sexes. Thus, to our knowledge, we provide the first comprehensive evidence of postmating (as well as premating) reproductive isolation due to sexual conflict.

2019 ◽  
Author(s):  
Rochishnu Dutta ◽  
Tejinder Singh Chechi ◽  
N. G. Prasad

Abstract Background: The ability of sexual conflict to facilitate reproductive isolation is widely anticipated. However, very few experimental evolutionary studies have convincingly demonstrated the evolution of reproductive isolation due to sexual conflict. Recently a study on the replicates of Drosophila melanogaster populations under differential sexual conflict found that divergent mate preference evolved among replicates under high sexual conflict regime. The precopulatory isolating mechanism underlying such divergent mate preference could be sexual signals such as cuticular lipids since they evolve rapidly and are involved in D. melanogaster mate recognition. Using Drosophila melanogaster replicates used in the previous study, we investigate whether cuticular lipid divergence bears signatures of sexually antagonistic coevolution that led to reproductive isolation among replicates of high sexual conflict regime. Results: We found that their cuticular lipid profiles are sexually dimorphic. Although replicates with male biased sex ratio evolved isolation in reproductive traits due to high sexual conflict, the patterns of cuticular lipid divergence in high and low sexual conflict regimes suggest that sexual selection is the dominant selection pressure rather than sexual conflict affecting the cuticular lipid profile. We also find cuticular lipid divergence patterns to be suggestive of the Buridan’s Ass regime which is one of the six possible mechanism to resolve sexual conflict. Conclusions: Although reproductive isolation due to sexual conflict is anticipated, evolution of a sexually selected trait under sexual conflict may not lead to population differentiation in expected lines. This is because speciation due to sexually antagonistic coevolution is only one of the several outcomes of sexual conflict. This study indicates that population differentiation as a result of cuticular lipid divergence cannot be credited to sexual conflict despite high sexual conflict regime evolving divergent cuticular lipid profiles.


2009 ◽  
Vol 5 (5) ◽  
pp. 693-696 ◽  
Author(s):  
L. Gay ◽  
P.E. Eady ◽  
R. Vasudev ◽  
D.J. Hosken ◽  
T. Tregenza

Sexual conflict over reproductive investment can lead to sexually antagonistic coevolution and reproductive isolation. It has been suggested that, unlike most models of allopatric speciation, the evolution of reproductive isolation through sexually antagonistic coevolution will occur faster in large populations as these harbour greater levels of standing genetic variation, receive larger numbers of mutations and experience more intense sexual selection. We tested this in bruchid beetle populations ( Callosobruchus maculatus ) by manipulating population size and standing genetic variability in replicated lines derived from founders that had been released from sexual conflict for 90 generations. We found that after 19 generations of reintroduced sexual conflict, none of our treatments had evolved significant overall reproductive isolation among replicate lines. However, as predicted, measures of reproductive isolation tended to be greater among larger populations. We discuss our methodology, arguing that reproductive isolation is best examined by performing a matrix of allopatric and sympatric crosses whereas measurement of divergence requires crosses with a tester line.


2006 ◽  
Vol 361 (1466) ◽  
pp. 363-374 ◽  
Author(s):  
Tristan A.F Long ◽  
Robert Montgomerie ◽  
Adam K Chippindale

Six sister populations of Drosophila melanogaster kept under identical environmental conditions for greater than 600 generations were reciprocally crossed to investigate the incidence of population divergence in allopatry. Population crosses directly influenced fitness, mating frequency, and sperm competition patterns. Changes in both female remating rate and the outcome of male sperm competition (P 1 , P 2 ) in response to foreign males were consistent with intersexual coevolution. Moreover, seven of the 30 crosses between foreign mates resulted in significant reductions in female fitness, whereas two resulted in significant increases, compared to local matings. This tendency for foreign males to reduce female fitness may be interpreted as evidence for either sexually antagonistic coevolution or the disruption of mutualistic interactions. However, instances in which female fitness improved via cohabitation with foreign males may better reveal sexual conflict, signalling release from the cost of interacting with locally adapted males. By this metric, female reproduction in D. melanogaster is strongly constrained by local adaptation by males, a situation that would promote antagonistic coevolution between the sexes. We conclude that sexual selection can promote population differentiation in allopatry and that sexual conflict is likely to have played a role in population differentiation in this study system.


2018 ◽  
Author(s):  
Antonin Jean Johan Crumière ◽  
David Armisén ◽  
Aïdamalia Vargas-Lowman ◽  
Martha Kubarakos ◽  
Felipe Ferraz Figueiredo Moreira ◽  
...  

AbstractSexual conflict may result in the escalating coevolution of sexually antagonistic traits. However, our understanding of the evolutionary dynamics of antagonistic traits and their role in association with sex-specific escalation remains limited. Here we study sexually antagonistic coevolution in a genus of water striders called Rhagovelia. We identified a set of male grasping traits and female anti-grasping traits used during pre-mating struggles and show that natural variation of these traits is associated with variation in mating performance in the direction expected for antagonistic co-evolution. Phylogenetic mapping detected signals of escalation of these sexually antagonistic traits suggesting an ongoing arms race. Moreover, their escalation appears to be constrained by a trade-off with dispersal through flight in both sexes. Altogether our results highlight how sexual interactions may have shaped sex-specific antagonistic traits and how constraints imposed by natural selection may have influenced their evolution.


2018 ◽  
Vol 373 (1757) ◽  
pp. 20170418 ◽  
Author(s):  
Jennifer C. Perry ◽  
Locke Rowe

Sexual conflict can lead to rapid and continuous coevolution between females and males, without any inputs from varying ecology. Yet both the degree of conflict and selection on antagonistic traits are known to be sensitive to local ecological conditions. This leads to the longstanding question: to what extent does variation in ecological context drive sexually antagonistic coevolution? In water striders, there is much information about the impacts of ecological factors on conflict, and about patterns of antagonistic coevolution. However, the connection between the two is poorly understood. Here, we first review the multiple ways in which ecological context might affect the coevolutionary trajectory of the sexes. We then review ecological and coevolutionary patterns in water striders, and connections between them, in light of theory and new data. Our analysis suggests that ecological variation does impact observed patterns of antagonistic coevolution, but highlights significant uncertainty due to the multiple pathways by which ecological factors can influence conflict and its evolutionary outcome. To the extent that water striders are a reasonable reflection of other systems, this observation serves as both an opportunity and a warning: there is much to learn, but gaining insight may be a daunting process in many systems. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.


2006 ◽  
Vol 361 (1466) ◽  
pp. 277-285 ◽  
Author(s):  
Locke Rowe ◽  
Troy Day

We begin by providing an operational definition of sexual conflict that applies to both inter- and intralocus conflict. Using this definition, we examine a series of simple coevolutionary models to elucidate fruitful approaches for detecting interlocus sexual conflict and resultant sexually antagonistic coevolution. We then use published empirical examples to illustrate the utility of these approaches. Three relevant attributes emerge. First, the dynamics of sexually antagonistic coevolution may obscure the conflict itself. Second, competing models of inter-sexual coevolution may yield similar population patterns near equilibria. Third, a variety of evolutionary forces underlying competing models may be acting simultaneously near equilibria. One main conclusion is that studies of emergent patterns in extant populations (e.g. studies of population and/or female fitness) are unlikely to allow us to distinguish among competing coevolutionary models. Instead, we need more research aimed at identifying the forces of selection acting on shared traits and sexually antagonistic traits. More specifically, we need a greater number of functional studies of female traits as well as studies of the consequences of both male and female traits for female fitness. A mix of selection and manipulative studies on these is likely the most promising route.


Sign in / Sign up

Export Citation Format

Share Document