sexually antagonistic coevolution
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

2020 ◽  
Vol 22 ◽  
Author(s):  
Shannon L Summers ◽  
Akito Y Kawahara ◽  
Ana P. S. Carvalho

Male mating plugs have been used in many species to prevent female re-mating and sperm competition. One of the most extreme examples of a mating plug is the sphragis, which is a large, complex and externalized plug found only in butterflies. This structure is found in many species in the genus Acraea (Nymphalidae) and provides an opportunity for investigation of the effects of the sphragis on the morphology of the genitalia, which is poorly understood. This study aims to understand morphological interspecific variation in the genitalia of Acraea butterflies. Using specimens from museum collections, abdomen dissections were conducted on 19 species of Acraea: 9 sphragis bearing and 10 non-sphragis bearing species. Genitalia imaging was performed for easier comparison and analysis and measurements of genitalia structures was done using ImageJ software. Some distinguishing morphological features in the females were found. The most obvious difference is the larger and more externalized copulatory opening in sphragis bearing species, with varying degrees of external projections. Females of the sphragis bearing species also tend to have a shorter ductus (the structure that connects the copulatory opening with the sperm storage organ) than those without the sphragis. These differences may be due to a sexually antagonistic coevolution between the males and females, where the females evolve larger and more difficult to plug copulatory openings and the males attempt to prevent re-mating with the sphragis.


2019 ◽  
Vol 32 (2) ◽  
pp. 175-189
Author(s):  
Laura Segura-Hernández ◽  
Anita Aisenberg ◽  
Eric Vargas ◽  
Linda Hernández-Durán ◽  
William G. Eberhard ◽  
...  

2019 ◽  
Author(s):  
Rochishnu Dutta ◽  
Tejinder Singh Chechi ◽  
N. G. Prasad

Abstract Background: The ability of sexual conflict to facilitate reproductive isolation is widely anticipated. However, very few experimental evolutionary studies have convincingly demonstrated the evolution of reproductive isolation due to sexual conflict. Recently a study on the replicates of Drosophila melanogaster populations under differential sexual conflict found that divergent mate preference evolved among replicates under high sexual conflict regime. The precopulatory isolating mechanism underlying such divergent mate preference could be sexual signals such as cuticular lipids since they evolve rapidly and are involved in D. melanogaster mate recognition. Using Drosophila melanogaster replicates used in the previous study, we investigate whether cuticular lipid divergence bears signatures of sexually antagonistic coevolution that led to reproductive isolation among replicates of high sexual conflict regime. Results: We found that their cuticular lipid profiles are sexually dimorphic. Although replicates with male biased sex ratio evolved isolation in reproductive traits due to high sexual conflict, the patterns of cuticular lipid divergence in high and low sexual conflict regimes suggest that sexual selection is the dominant selection pressure rather than sexual conflict affecting the cuticular lipid profile. We also find cuticular lipid divergence patterns to be suggestive of the Buridan’s Ass regime which is one of the six possible mechanism to resolve sexual conflict. Conclusions: Although reproductive isolation due to sexual conflict is anticipated, evolution of a sexually selected trait under sexual conflict may not lead to population differentiation in expected lines. This is because speciation due to sexually antagonistic coevolution is only one of the several outcomes of sexual conflict. This study indicates that population differentiation as a result of cuticular lipid divergence cannot be credited to sexual conflict despite high sexual conflict regime evolving divergent cuticular lipid profiles.


2018 ◽  
Author(s):  
Antonin Jean Johan Crumière ◽  
David Armisén ◽  
Aïdamalia Vargas-Lowman ◽  
Martha Kubarakos ◽  
Felipe Ferraz Figueiredo Moreira ◽  
...  

AbstractSexual conflict may result in the escalating coevolution of sexually antagonistic traits. However, our understanding of the evolutionary dynamics of antagonistic traits and their role in association with sex-specific escalation remains limited. Here we study sexually antagonistic coevolution in a genus of water striders called Rhagovelia. We identified a set of male grasping traits and female anti-grasping traits used during pre-mating struggles and show that natural variation of these traits is associated with variation in mating performance in the direction expected for antagonistic co-evolution. Phylogenetic mapping detected signals of escalation of these sexually antagonistic traits suggesting an ongoing arms race. Moreover, their escalation appears to be constrained by a trade-off with dispersal through flight in both sexes. Altogether our results highlight how sexual interactions may have shaped sex-specific antagonistic traits and how constraints imposed by natural selection may have influenced their evolution.


2018 ◽  
Vol 285 (1886) ◽  
pp. 20181563 ◽  
Author(s):  
Kristina U. Wensing ◽  
Claudia Fricke

Transfer and receipt of seminal fluid proteins crucially affect reproductive processes in animals. Evolution in these male ejaculatory proteins is explained with post-mating sexual selection, but we lack a good understanding of the evolution of female post-mating responses (PMRs) to these proteins. Some of these proteins are expected to mediate sexually antagonistic coevolution generating the expectation that females evolve resistance. One candidate in Drosophila melanogaster is the sex peptide (SP) which confers cost of mating in females. In this paper, we compared female SP-induced PMRs across three D. melanogaster wild-type populations after mating with SP-lacking versus control males including fitness measures. Surprisingly, we did not find any evidence for SP-mediated fitness costs in any of the populations. However, female lifetime reproductive success and lifespan were differently affected by SP receipt indicating that female PMRs diverged among populations. Injection of synthetic SP into virgin females further supported these findings and suggests that females from different populations require different amounts of SP to effectively initiate PMRs. Molecular analyses of the SP receptor suggest that genetic differences might explain the observed phenotypical divergence. We discuss the evolutionary processes that might have caused this divergence in female PMRs.


2018 ◽  
Vol 373 (1757) ◽  
pp. 20170418 ◽  
Author(s):  
Jennifer C. Perry ◽  
Locke Rowe

Sexual conflict can lead to rapid and continuous coevolution between females and males, without any inputs from varying ecology. Yet both the degree of conflict and selection on antagonistic traits are known to be sensitive to local ecological conditions. This leads to the longstanding question: to what extent does variation in ecological context drive sexually antagonistic coevolution? In water striders, there is much information about the impacts of ecological factors on conflict, and about patterns of antagonistic coevolution. However, the connection between the two is poorly understood. Here, we first review the multiple ways in which ecological context might affect the coevolutionary trajectory of the sexes. We then review ecological and coevolutionary patterns in water striders, and connections between them, in light of theory and new data. Our analysis suggests that ecological variation does impact observed patterns of antagonistic coevolution, but highlights significant uncertainty due to the multiple pathways by which ecological factors can influence conflict and its evolutionary outcome. To the extent that water striders are a reasonable reflection of other systems, this observation serves as both an opportunity and a warning: there is much to learn, but gaining insight may be a daunting process in many systems. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.


2017 ◽  
Author(s):  
Alison M. Wardlaw ◽  
Aneil F. Agrawal

AbstractIn many taxa, there is a conflict between the sexes over mating rate. The outcome of sexually antagonistic coevolution depends on the costs of mating and natural selection against sexually antagonistic traits. A sexually transmitted infection (STI) changes the relative strength of these costs. We study the three-way evolutionary interaction between male persistence, female resistance, and STI virulence for two types of STIs: a viability-reducing STI and a reproduction-reducing STI. A viability-reducing STI escalates conflict between the sexes. This leads to increased STI virulence (i.e., full coevolution) if the costs of sexually antagonistic traits occur through viability but not if the costs occur through reproduction. In contrast, a reproduction-reducing STI de-escalates the sexual conflict but STI virulence does not coevolve in response. We also investigated the establishment probability of STIs under different combinations of evolvability. Successful invasion by a viability-reducing STI becomes less likely if hosts (but not parasite) are evolvable, especially if only the female trait can evolve. A reproduction-reducing STI can almost always invade because it does not kill its host. We discuss how the evolution of host and parasite traits in a system with sexual conflict differ from a system with female mate choice.


2017 ◽  
Vol 26 (4) ◽  
pp. 307-313 ◽  
Author(s):  
David M. Buss

Despite interdependent reproductive fates that favor cooperation, males and females exhibit many psychological and behavioral footprints of sexually antagonistic coevolution. These include strategies of deception, sexual exploitation, and sexual infidelity as well as anti-exploitation defenses such as commitment skepticism and emotions such as sexual regret and jealousy. Sexual conflict pervades the mating arena prior to sexual consummation, after a mating relationship has formed, and in the aftermath of a breakup. It also permeates many other social relationships in forms such as daughter-guarding, conflict in opposite-sex friendships, and workplace sexual harassment. As such, sexual conflict constitutes not a narrow or occasional flashpoint but rather persistent threads that run through our intensely group-living species.


2017 ◽  
Author(s):  
Nathan W Burke ◽  
Russell Bonduriansky

ABSTRACTRecent theory suggests that male coercion could contribute to the maintenance of obligate sex. However, it is unclear how sexually antagonistic coevolution might interact with mate scarcity to influence the probability of invasions of obligately sexual populations by mutants capable of parthenogenetic reproduction. Furthermore, if invasion does occur, it is unclear which factors promote or prevent the complete loss of sex. Using individual-based models, we show that male coercion cannot prevent the invasion of a mutant allele that gives virgin females the ability to reproduce parthenogenetically because mutants always benefit by producing at least some offspring asexually prior to mating. Indeed, the likelihood of invasion generally increases as sexual conflict intensifies, and the effects of sexual conflict and mate scarcity can interact in complex ways to promote invasion. Nonetheless, we find that coercion prevents the complete loss of sex unless linkage disequilibrium can build up between the mutant allele and alleles for effective female resistance. Our findings clarify how costs and limitations of female resistance can promote the maintenance of sexual reproduction, turning sex into an evolutionary trap. At the same time, our results highlight the need to explain why facultative reproductive strategies so rarely evolve in nature.


Sign in / Sign up

Export Citation Format

Share Document