scholarly journals Estimating short-term synaptic plasticity from pre- and postsynaptic spiking

2017 ◽  
Author(s):  
Abed Ghanbari ◽  
Aleksey Malyshev ◽  
Maxim Volgushev ◽  
Ian H. Stevenson

AbstractShort-term synaptic plasticity (STP) critically affects the processing of information in neuronal circuits by reversibly changing the effective strength of connections between neurons on time scales from milliseconds to a few seconds. STP is traditionally studied using intracellular recordings of postsynaptic potentials or currents evoked by presynaptic spikes. However, STP also affects the statistics of postsynaptic spikes. Here we present two model-based approaches for estimating synaptic weights and short-term plasticity from pre- and postsynaptic spike observations alone. We extend a generalized linear model (GLM) that predicts postsynaptic spiking as a function of the observed pre- and postsynaptic spikes and allow the connection strength (coupling term in the GLM) to vary as a function of time based on the history of presynaptic spikes. Our first model assumes that STP follows a Tsodyks-Markram description of vesicle depletion and recovery. In a second model, we introduce a functional description of STP where we estimate the coupling term as a biophysically unrestrained function of the presynaptic inter-spike intervals. To validate the models, we test the accuracy of STP estimation using the spiking of pre- and postsynaptic neurons with known synaptic dynamics. We first test our models using the responses of layer 2/3 pyramidal neurons to simulated presynaptic input with different types of STP, and then use simulated spike trains to examine the effects of spike-frequency adaptation, stochastic vesicle release, spike sorting errors, and common input. We find that, using only spike observations, both model-based methods can accurately reconstruct the time-varying synaptic weights of presynaptic inputs for different types of STP. Our models also capture the differences in postsynaptic spike responses to presynaptic spikes following short vs long inter-spike intervals, similar to results reported for thalamocortical connections. These models may thus be useful tools for characterizing short-term plasticity from multi-electrode spike recordings in vivo.Author SummaryInformation processing in the nervous system critically depends on dynamic changes in the strength of connections between neurons. Short-term synaptic plasticity (STP), changes that occur on timescales from milliseconds to a few seconds, is thought to play a role in tasks such as speech recognition, motion detection, and working memory. Although intracellular recordings in slices of neural tissue have identified synaptic mechanisms of STP and have demonstrated its potential role in information processing, studying STP in intact animals, especially during behavior, is experimentally difficult. Unlike intracellular recordings, extracellular spiking of hundreds of neurons simultaneously can be recorded even in behaving animals. Here we developed two models that allow estimation of STP from extracellular spike recordings. We validate these models using results from in vitro experiments which simulate a realistic synaptic input from a population of presynaptic neurons with defined STP rules. Our results show that both new models can accurately recover the synaptic dynamics underlying spiking. These new methods will allow us to study STP using extracellular recordings, and therefore on a much larger scale than previously possible in behaving animals.

2018 ◽  
Author(s):  
Abed Ghanbari ◽  
Naixin Ren ◽  
Christian Keine ◽  
Carl Stoelzel ◽  
Bernhard Englitz ◽  
...  

AbstractInformation transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as non-synaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and non-synaptic effects based only on observed pre- and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a thalamothalamic connection in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multi-electrode recordings to illustrate how such an approach has the potential to reveal cell-type specific differences in spike transmission in vivo. Although short-term synaptic plasticity parameters estimated from ongoing pre- and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.Significance StatementAlthough synaptic dynamics have been extensively studied and modeled using intracellular recordings of post-synaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here we developed a model that, using only observations of pre- and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity and non-synaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.


2007 ◽  
Vol 97 (6) ◽  
pp. 4079-4095 ◽  
Author(s):  
David Sussillo ◽  
Taro Toyoizumi ◽  
Wolfgang Maass

Numerous experimental data show that cortical networks of neurons are not silent in the absence of external inputs, but rather maintain a low spontaneous firing activity. This aspect of cortical networks is likely to be important for their computational function, but is hard to reproduce in models of cortical circuits of neurons because the low-activity regime is inherently unstable. Here we show—through theoretical analysis and extensive computer simulations—that short-term synaptic plasticity endows models of cortical circuits with a remarkable stability in the low-activity regime. This short-term plasticity works as a homeostatic mechanism that stabilizes the overall activity level in spite of drastic changes in external inputs and internal circuit properties, while preserving reliable transient responses to signals. The contribution of synaptic dynamics to this stability can be predicted on the basis of general principles from control theory.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25472 ◽  
Author(s):  
Jason Tait Sanchez Quinones ◽  
Quinones Karla ◽  
Otto-Meyer Sebastian

Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.


2015 ◽  
Vol 113 (2) ◽  
pp. 509-523 ◽  
Author(s):  
Vishwa Goudar ◽  
Dean V. Buonomano

Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate that universal properties of cortical synapses—short-term synaptic plasticity of excitatory and inhibitory synapses—are well suited for the generation of order-selective neural responses. Using computational models of canonical disynaptic circuits, we show that the dynamic changes in the balance of excitation and inhibition imposed by short-term plasticity lead to the generation of order-selective responses. Parametric analyses predict that among the forms of short-term plasticity expressed at excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-to-excitatory synapses, the single most important contributor to order-selectivity is the paired-pulse depression of inhibitory postsynaptic potentials (IPSPs). A topographic model of the auditory cortex that incorporates short-term plasticity accounts for both context-dependent suppression and enhancement in response to paired tones. Together these results provide a framework to account for an important computational problem based on ubiquitous synaptic properties that did not yet have a clearly established computational function. Additionally, these studies suggest that disynaptic circuits represent a fundamental computational unit that is capable of processing both spatial and temporal information.


1998 ◽  
Vol 80 (4) ◽  
pp. 1765-1774 ◽  
Author(s):  
Dean V. Buonomano ◽  
Michael M. Merzenich

Buonomano, Dean V. and Michael M. Merzenich. Net interaction between different forms of short-term synaptic plasticity and slow-IPSPs in the hippocampus and auditory cortex. J. Neurophysiol. 80: 1765–1774, 1998. Paired-pulse plasticity is typically used to study the mechanisms underlying synaptic transmission and modulation. An important question relates to whether, under physiological conditions in which various opposing synaptic properties are acting in parallel, the net effect is facilitatory or depressive, that is, whether cells further or closer to threshold. For example, does the net sum of paired-pulse facilitation (PPF) of excitatory postsynaptic potentials (EPSPs), paired-pulse depression (PPD) of inhibitory postsynaptic potentials (IPSPs), and the hyperpolarizing slow IPSP result in depression or facilitation? Here we examine how different time-dependent properties act in parallel and examine the contribution of γ-aminobutyric acid-B (GABAB) receptors that mediate two opposing processes, the slow IPSP and PPD of the fast IPSP. Using intracellular recordings from rat CA3 hippocampal neurons and L-II/III auditory cortex neurons, we examined the postsynaptic responses to paired-pulse stimulation (with intervals between 50 and 400 ms) of the Schaffer collaterals and white matter, respectively. Changes in the amplitude, time-to-peak (TTP), and slope of each EPSP were analyzed before and after application of the GABAB antagonist CGP-55845. In both CA3 and L-II/III neurons the peak amplitude of the second EPSP was generally depressed (further from threshold) compared with the first at the longer intervals; however, these EPSPs were generally broader and exhibited a longer TTP that could result in facilitation by enhancing temporal summation. At the short intervals CA3 neurons exhibited facilitation of the peak EPSP amplitude in the absence and presence of CGP-55845. In contrast, on average L-II/III cells did not exhibit facilitation at any interval, in the absence or presence of CGP-55845. CGP-55845 generally “erased” short-term plasticity, equalizing the peak amplitude and TTP of the first and second EPSPs at longer intervals in the hippocampus and auditory cortex. These results show that it is necessary to consider all time-dependent properties to determine whether facilitation or depression will dominate under intact pharmacological conditions. Furthermore our results suggest that GABAB-dependent properties may be the major contributor to short-term plasticity on the time scale of a few hundred milliseconds and are consistent with the hypothesis that the balance of different time-dependent processes can modulate the state of networks in a complex manner and could contribute to the generation of temporally sensitive neural responses.


2004 ◽  
Vol 84 (1) ◽  
pp. 69-85 ◽  
Author(s):  
MATTHEW A. XU-FRIEDMAN ◽  
WADE G. REGEHR

Xu-Friedman, Matthew A., and Wade G. Regehr. Structural Contributions to Short-Term Synaptic Plasticity. Physiol Rev 84: 69–85, 2004; 10.1152/physrev.00016.2003.—Synaptic ultrastructure is critical to many basic hypotheses about synaptic transmission. Various aspects of synaptic ultrastructure have also been implicated in the mechanisms of short-term plasticity. These forms of plasticity can greatly affect synaptic strength during ongoing activity. We review the evidence for how synaptic ultrastructure may contribute to facilitation, depletion, saturation, and desensitization.


Author(s):  
Nahid Roohi ◽  
◽  
Mahboubeh Ahmadi ◽  
Yaghoun Fathollahi ◽  
Amir Shojaei ◽  
...  

There are many differences among dorsal and ventral hippocampal neural circuits that affect the synaptic plasticity. In this study we compared the occurrence of short-term plasticity in the field excitatory post synaptic potentials (fEPSP) in dorsal and ventral hippocampal CA1 area following kindled seizures. Animals (male C57 B6/J mice, 12 weeks of age) were kindled by intraperitoneal injections of pentylenetetrazole (PTZ) and fEPSPs were recorded from dorsal and ventral hippocampal slices. Short-term plasticity was evaluated by measuring fEPSP-slope and fEPSP-area following paired-pulse stimulation delivered at three inter-pulse intervals (20, 80 and 160 ms). Obtained results showed that in control slices fEPSP-slope was greater in ventral- compared to dorsal hippocampus, but there was no difference in fEPSP-area among two regions. In hippocampal slices of kindled animals, fEPSP-slope was similar in dorsal and ventral regions, but fEPSP-area was greater in ventral- compared to dorsal hippocampus. In addition, fEPSP-area was greater in kindled compared to control group only in ventral hippocampus. PTZ kindled slices showed impaired short-term facilitation and the paired-pulse index was reduced only at dorsal hippocampal slices. Kindling had no significant effect on paired-pulse ratio in ventral hippocampal slices. Our findings indicated that the seizure occurrence affected the neural activity of hippocampus in a regional dependent manner. Although kindling increased fEPSP-area in ventral hippocampus, kindling-induced changes in short-term synaptic plasticity was significant only in dorsal hippocampal slices compared to control group. The difference in the responses of hippocampal dorsal and ventral poles has to be considered in the future researches.


Sign in / Sign up

Export Citation Format

Share Document