acid type
Recently Published Documents


TOTAL DOCUMENTS

1187
(FIVE YEARS 174)

H-INDEX

74
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 656
Author(s):  
Wei-Sheng Chen ◽  
Chih-Yuan Hsiao ◽  
Cheng-Han Lee

Electronic products are ever growing in popularity, and tantalum capacitors are heavily used in small electronic products. Spent epoxy-coated solid electrolyte tantalum capacitors, containing about 22 wt.% of tantalum and 8 wt.% of manganese, were treated with selective leaching by hydrochloric acid and chlorination after removing the epoxy resin, and the products converted, respectively, to Mn(OH)2 and TaCl5. The effects of acid type, acid concentration, liquid–solid ratio, and reaction time were investigated to dissolve the manganese. The optimal selective leaching conditions were determined as 3 mol/L of HCl, 40 mL/g at 25 °C for 32 min. Next, residues of selective leaching after washing and drying were heated with ferrous chloride to convert to pure TaCl5. Mixing 48 wt.% of chloride and 52 wt.% of residues for a total of 5 g was conducted to complete the chlorination process in the tube furnace at 450 °C for 3 h. A total of 2.35 g of Ta was collected and the recovery of Ta achieved 94%. Finally, Mn(OH)2 and TaCl5 were separated and purified as the products.


2022 ◽  
Author(s):  
Daiki Katagishi ◽  
Daisuke Yasuda ◽  
Kyoko Takahashi ◽  
Shigeo Nakamura ◽  
Tadahiko Mashino ◽  
...  

Abstract COVID-19 is a disease that is causing a global pandemic. There is an urgent need to develop new drugs to treat it. In this study, we evaluated the inhibitory activities of a series of fullerene derivatives against the main protease of SARS-CoV-2, the virus that causes COVID-19. As a result, it was found that the malonic acid-type fullerene derivatives showed strong inhibitory activities.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Alexander Pestov ◽  
Yuliya Privar ◽  
Arseny Slobodyuk ◽  
Andrey Boroda ◽  
Svetlana Bratskaya

Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than a direct reaction between chitosan and acetaldehyde due to the better commercial availability and higher boiling point of the acetals. Rheological data confirmed the formation of intermolecular bonds in chitosan solution after the addition of acetaldehyde diethyl acetal at an equimolar NH2: acetal ratio. The chemical structure of the reaction products was determined using elemental analysis and 13C NMR and FT-IR spectroscopy. The formed chitosan-acetylimine underwent further irreversible redox transformations yielding a mechanically stable hydrogel insoluble in a broad pH range. The reported reaction is an example of when an inappropriate selection of acid type for chitosan dissolution prevents hydrogel formation.


2021 ◽  
Vol 17 (3) ◽  
pp. 061-077
Author(s):  
Ali Esmail Al-Snafi

Insomnia and anxiety are worldwide medical problems. Plant extracts possessed sedative and anxiolytic effect via different mechanisms included interactions with Na+ channels, γ-aminobutyric acid type A receptors, N-methyl-D-aspartate receptors and chatecholamines. In the current review, Web Science, PubMed, Scopus and Science Direct, were searched to investigate the plants with sedative and anxiolytic effects


Author(s):  
Nina Ogrinc ◽  
Serge Schneider ◽  
Adèle Bourmaud ◽  
Michel Salzet ◽  
Isabelle Fournier

In the recent years, Cannabis and hemp-based products have become increasingly popular for various applications ranging from recreational use, edibles, beverages to health care products and medicines. The rapid detection and differentiation of phytocannabinoids is, therefore, essential to assess the potency, therapeutic and nutritional values of cannabis cultivars. Here, we implemented the SpiderMass technology for the in vivo detection of cannabidiol acid (CBDA) and tetrahydrocannabinol acid (THCA) and other endogenous organic plant compounds to access distribution gradients within the plants and differentiate cultivars. The SpiderMass system is composed of an IR- laser handheld microsampling probe connected to the mass spectrometer through a transfer tube. The analysis was performed in situ on different plant organs from freshly cultivated Cannabis plants in only a few seconds. SpiderMass analysis easily discriminated the two acid phytocannabinoid isomers by MS/MS and the built statistical models differentiated between four Cannabis cultivars. Different abundancies of acid phytocannabinoids were also found along the plant as well as between different cultivars. All together, these results introduce the direct analysis by SpiderMass as a compelling analytical alternative for forensic and hemp industrial analysis.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18 ◽  
Author(s):  
Jinuk Choi ◽  
Gye Seok An

Oxide impurities such as boria (B2O3) and zirconia (ZrO2) on the surfaces of zirconium diboride (ZrB2) particles are known to limit their sinterability. Among the impurities, B2O3 on the surface of ZrB2 particles could be easily removed by methanol or hydrofluoric acid. However, the remaining ZrO2 still gave negative influences on the sinterability. In this study, ZrB2 particles were treated with various acids to remove oxide impurities on their surfaces. The acid treatments were found to vary in efficacy, according to acid type, and affect the crystallinity and morphology of ZrB2 particles to varying degrees, in some cases forming additional impurities. In particular, the change in the oxygen content of the ZrB2 particles induced by acid treatment was found to depend on the type of acid. The results of the acid treatments were compared which revealed that HNO3 treatment optimizes the purity of ZrB2 particles. In addition, the effects of acid treatment on the surface properties of ZrB2 particles were considered. In particular, the correlation between the surface properties of the acid-treated ZrB2 particles and their dispersibility in aqueous solution was investigated.


Author(s):  
Francesco Bavo ◽  
Heleen de-Jong ◽  
Jonas Petersen ◽  
Christina Birkedahl Falk-Petersen ◽  
Rebekka Löffler ◽  
...  

2021 ◽  
Author(s):  
Enrique González-Tortuero ◽  
Revathy Krishnamurthi ◽  
Heather E. Allison ◽  
Ian B. Goodhead ◽  
Chloe E. James

The number of newly available viral genomes and metagenomes has increased exponentially since the development of high throughput sequencing platforms and genome analysis tools. Bioinformatic annotation pipelines are largely based on open reading frame (ORF) calling software, which identifies genes independently of the sequence taxonomical background. Although ORF-calling programs provide a rapid genome annotation, they can misidentify ORFs and start codons; errors that might be perpetuated and propagated over time. This study evaluated the performance of multiple ORF-calling programs for viral genome annotation against the complete RefSeq viral database. Programs outputs varied when considering the viral nucleic acid type versus the viral host. According to the number of ORFs, Prodigal and Metaprodigal were the most accurate programs for DNA viruses, while FragGeneScan and Prodigal generated the most accurate outputs for RNA viruses. Similarly, Prodigal outperformed the benchmark for viruses infecting prokaryotes, and GLIMMER and GeneMarkS produced the most accurate annotations for viruses infecting eukaryotes. When the coordinates of the ORFs were considered, Prodigal scored high for all scenarios except for RNA viruses, where GeneMarkS generated the most reliable results. Overall, the quality of the coordinates predicted for RNA viruses was poorer than for DNA viruses, suggesting the need for improved ORF-calling programs to deal with RNA viruses. Moreover, none of the ORF-calling programs reached 90% accuracy for annotation of DNA viruses. Any automatic annotation can still be improved by manual curation, especially when the presence of ORFs is validated with wet-lab experiments. However, our evaluation of the current ORF-calling programs is expected to be useful for the improvement of viral genome annotation pipelines and highlights the need for more expression data to improve the rigor of reference genomes.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8316
Author(s):  
Lina Qiu ◽  
Jiandi Li ◽  
Weiwei Zhang ◽  
Aijun Gong ◽  
Xiaotao Yuan ◽  
...  

N,N,N′,N′-Tetraoctyl diglycolamide (TODGA), as a new extraction agent, is effective for its excellent performance and low environmental hazard, and it is very welcome for the rare earth separation process. In this paper, by controlling the extraction time, diluent type, acid type and its concentration, rare earth concentration, etc., the optimum extraction and back-extraction effects of TODGA on La(III), Ce(III), Pr(III), and Nd(III) and mixed rare earths were obtained. The experiment showed that 0.10 mol·L−1 TODGA had the best extraction effect on single rare earth under the conditions of using petroleum ether as diluent, 5 mol·L−1 nitric acid, 20 min extraction time, and 0.01 mol·L−1 rare earth. In the mixed rare earth extraction, the percentage concentrations of La(III), Ce(III), Pr(III), and Nd(III) could be achieved from 21.7%, 19.9%, 30.8%, and 22.2% at the initial stage to 90.5%, 37%, 51%, and 62% after extraction, respectively, by controlling the number of back-extraction cycles and the concentrations of hydrochloric acid and nitric acid in the back-extraction system. The TODGA–rare earth carrier system showed the best back-extraction effect when the hydrochloric acid concentration was 1 mol·L−1 and the back-extraction time was 20 min. At the same time, the mixed rare earth liquid system with low initial concentration was selected for extraction and separation of mixed rare earth. The separation effect was better, and the recovery rate was higher than that of mixed rare earth liquid system with a high initial concentration.


2021 ◽  
Author(s):  
Arif Azhan Abdul Manap ◽  
Nazliah Nazma Zulkifli

Abstract A base chemical flooding formulation using alkaline-surfactant-polymer (ASP) has been developed for application in offshore environments. The formulation uses combination of conventional alkali (sodium carbonate) with amphoteric surfactant. The field is currently under waterflooding using sea water as injection water. However, since alkali is incompatible with divalent ions in sea water, an alternative formulation using seawater with no additional water treatment is also being developed and considered for application. The alternative formulation uses combination of alkyl propoxy sulfate (APS) and alkyl ethoxy sulfate (AES). Coreflood recovery performance of both formulations is similar. Without alkali, high surfactant adsorption becomes major concern for the alternative formulation. Thus, an adsorption inhibitor (AI) agent – polyacrylic acid type, is being considered as an additive to address this concern. While AI showed potential in reducing surfactant adsorption and improving oil recovery efficiency, it can also increase overall cost for the surfactant in sea water chemical formulation. Hence, the merit to apply AI was not clearly observed.


Sign in / Sign up

Export Citation Format

Share Document