scholarly journals Medicago truncatula Yellow Stripe1-Like3 gene is involved in symbiotic nitrogen fixation

2019 ◽  
Author(s):  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
María Reguera ◽  
Lorena Novoa-Aponte ◽  
Ana Mijovilovich ◽  
...  

AbstractSymbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living with the nodule cells, a process in which vascular transport is essential. As occurs in root-to-shoot transport, members of the Yellow Stripe-Like (YSL) family of metal transporters should also be required for root-to-nodule metal delivery. The genome of the model legume Medicago truncatula encodes for eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules, and by cortical nodule cells. Reducing expression levels of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role of MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.HighlightMedicago truncatula YSL3 transporter is required for optimal nitrogen fixation in root nodules, mediating iron and zinc distribution in these organs.

2020 ◽  
Vol 71 (22) ◽  
pp. 7257-7269
Author(s):  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
María Reguera ◽  
Lorena Novoa-Aponte ◽  
Ana Mijovilovich ◽  
...  

Abstract Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Eric del Sastre ◽  
Manuel Tejada-Jiménez ◽  
Camile Larue ◽  
...  

SUMMARYSymbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires of relatively large levels of transition metals. These elements act as cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process participated by a number of metal transporters and small organic molecules that mediate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this non-proteinogenic amino acid forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, a phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would be the result of the altered iron distribution in nas2-1 nodules, as indicated by X-ray fluorescence studies. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.Significance StatementNicotianamine synthesis mediated by MtNAS2 is important for iron allocation for symbiotic nitrogen fixation by rhizobia in Medicago truncatula root nodules.


2015 ◽  
Vol 28 (12) ◽  
pp. 1353-1363 ◽  
Author(s):  
Pauline Blanquet ◽  
Liliana Silva ◽  
Olivier Catrice ◽  
Claude Bruand ◽  
Helena Carvalho ◽  
...  

Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.


2015 ◽  
Vol 112 (49) ◽  
pp. 15232-15237 ◽  
Author(s):  
Beatrix Horváth ◽  
Ágota Domonkos ◽  
Attila Kereszt ◽  
Attila Szűcs ◽  
Edit Ábrahám ◽  
...  

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


2020 ◽  
Author(s):  
Rosario Castro-Rodríguez ◽  
María Reguera ◽  
Viviana Escudero ◽  
Patricia Gil-Díez ◽  
Julia Quintana ◽  
...  

ABSTRACTYellow Stripe-Like (YSL) proteins are a family of plant transporters typically involved in transition metal homeostasis. The substrate of three of the four YSL clades (clades I, II, and IV) are metal complexes with non-proteinogenic amino acid nicotianamine or its derivatives. No such transport capabilities have been shown for any member of the remaining clade (clade III), which is able to translocate short peptides across the membranes instead. The connection between clade III YSL members and metal homeostasis might have been masked by the functional redundancy characteristic of this family. This might have been circumvented in legumes through neofunctionalization of YSLs to ensure a steady supply of transition metals for symbiotic nitrogen fixation in root nodules. To test this possibility, Medicago truncatula clade III transporter MtYSL7 has been studied both when the plant was fertilized with ammonium nitrate or when nitrogen had to be provided by endosymbiotic rhizobia within the root nodules. MtYSL7 is a plasma membrane protein expressed in the vasculature and in the nodule cortex. This protein is able to transport short peptides into the cytosol, although none with known metal homeostasis roles. Reducing MtYSL7 expression levels resulted in diminished nitrogen fixation rates. In addition, nodules of mutant lines lacking YSL7 accumulated more copper and iron, the later the likely result of increased expression in roots of iron uptake and delivery genes. The available data is indicative of a role of MtYSL7, and likely other clade III YSLs, in transition metal homeostasis.ONE SENTENCE SUMMARYMedicago truncatula YSL7 is a peptide transporter required for symbiotic nitrogen fixation in legume nodules, likely controlling transition metal allocation to these organs.


2017 ◽  
Author(s):  
Marta Senovilla ◽  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
Viviana Escudero ◽  
Igor Kryvoruchko ◽  
...  

Summary• Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper transporter would introduce it into the cell to synthesize cupro-proteins.• COPT family members in model legumeMedicago truncatulawere identified and their expression determined. Yeast complementation assays, confocal microscopy, and phenotypical characterization of aTnt1insertional mutant line were carried out in the nodule-specificM.truncatulaCOPT family member.•Medicago truncatulagenome encodes eight COPT transporters.MtCOPT1(Medtr4g019870) is the only nodule-specificCOPTgene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a copper-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation ofMtCOPT1results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a copper-dependent function, such as cytochrome oxidase activity incopt1-1bacteroids.• These data are consistent with a model in which MtCOPT1 transports copper from the apoplast into nodule cells to provide copper for essential metabolic processes associated with symbiotic nitrogen fixation.


2016 ◽  
Author(s):  
Χρυσάνθη Καλλονιάτη

Symbiotic nitrogen fixation in legumes takes place in specialized organs called nodules,which become the main source of assimilated nitrogen for the whole plant. Symbiotic nitro‐gen fixation requires exquisite integration of plant and bacterial metabolism and involvesglobal changes in gene expression and metabolite accumulation in both rhizobia and thehost plant. In order to study the metabolic changes mediated by symbiotic nitrogen fixationon a whole‐plant level, metabolite levels were profiled by gas chromatography–mass spec‐trometry in nodules and non‐symbiotic organs of Lotus japonicus plants uninoculated or in‐oculated with M. loti wt,  ΔnifA or  ΔnifH fix‐ strains. Furthermore, transcriptomic andbiochemical approaches were combined to study sulfur metabolism in nodules, its link tosymbiotic nitrogen fixation, and the effect of nodules on whole‐plant sulfur partitioning andmetabolism. It is well established that nitrogen and sulfur (S) metabolism are tightly en‐twined and sulfur is required for symbiotic nitrogen fixation, however, little is known aboutthe molecular and biochemical mechanisms governing sulfur uptake and assimilation duringsymbiotic nitrogen fixation. Transcript profiling in Lotus japonicus was combined with quan‐tification of S‐metabolite contents and APR activity in nodules and in non‐symbiotic organsof plants uninoculated or inoculated with M. loti wt, ΔnifA or ΔnifH fix‐ strains. Moreover,sulfate uptake and its distribution into different plant organs were analyzed and 35S‐flux intodifferent S‐pools was monitored. Metabolite profiling revealed that symbiotic nitrogen fixa‐tion results in dramatic changes of many aspects of primary and secondary metabolism innodules which leads to global reprogramming of metabolism of the model legume on awhole‐plant level. Moreover, our data revealed that nitrogen fixing nodules represent athiol‐rich organ. Their high APR activity and 35S‐flux into cysteine and its metabolites in com‐bination with the transcriptional up‐regulation of several genes involved in sulfur assimila‐tion highlight the function of nodules as a new site of sulfur assimilation. The higher thiolcontent observed in non‐symbiotic organs of nitrogen fixing plants in comparison touninoculated plants cannot be attributed to local biosynthesis, indicating that nodules couldserve as a novel source of reduced sulfur for the plant, which triggers whole‐plant repro‐gramming of sulfur metabolism. Interestingly, the changes in metabolite profiling and theenhanced thiol biosynthesis in nodules and their impact on the whole‐plant sulfur, carbonand nitrogen economy are dampened in fix‐ plants, which in most respects metabolically re‐sembled uninoculated plants, indicating a strong interaction between nitrogen fixation andsulfur and carbon metabolism.


Sign in / Sign up

Export Citation Format

Share Document