iron delivery
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
pp. 42-46
Author(s):  
- -

In September 2021, an online webinar took place on the most common nutritional deficiency in the world – iron deficiency. According to the WHO recommendations, women should definitely receive iron and folic acid, starting with the stage of pregravid preparation, during pregnancy and lactation. Other trace elements and vitamins during pregnancy must be substantiated by evidence of their deficiency. WHO recommendations (2017) for antenatal care indicate that daily oral iron supplementation 30–60 mg and folic acid 400 µg in pregnant women can reduce the incidence of postpartum sepsis, preterm birth and low birth weight. Daily iron supplementation 60 mg should be preferred in regions where the prevalence of anemia in pregnant women ≥ 40%. In the first and third trimesters anemia is diagnosed by Hb level < 110 g/l, in the second trimester by Hb level < 105 g/l. If anemia is detected the iron dose is doubled until Hb reaches ≥ 110 g/l, after which the prophylactic dose is resumed. Iron supplements 120 mg once a week and folic acid 2800 µg once a week are recommended if daily intake of iron supplements is not possible due to side effects, and the prevalence of anemia in pregnant women does not exceed 20%.Modern Lipofer® technology in the development of liposomal iron delivery (when iron transported by liposomes) solved the problem of low bioavailability and poor tolerance, which is inherent in most ferrum drugs. As a result, iron trapped in liposomes (liposomal iron) does not come into contact with the mucous membranes of the gastrointestinal tract, but binds to chylomicrons, which enter the blood through the lymph, where iron is freed from the liposome. This way of absorption reduces iron loss, allows using of smaller doses and helps to avoid side effects.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 937-937
Author(s):  
Amaliris Guerra ◽  
Nermi Parrow ◽  
Paige McVeigh ◽  
Robert E Fleming ◽  
Yelena Ginzburg ◽  
...  

Abstract Transferrin (TF) is a bilobed 80kD glycoprotein with N- and C-lobe iron binding sites. TF circulates as four forms: unbound to iron (apo-TF), iron bound to the N-lobe (monoferric N-TF), the C-lobe (monoferric-C), or to both lobes (diferric-TF). Most circulating TF under physiological conditions is monoferric. The iron-bound TF forms interact with TF receptor-1 (TFR1), which is ubiquitously expressed and serves as the main mechanism for cellular iron delivery. Iron-bound TF also interacts with TF receptor-2 (TFR2) which is expressed on hepatocytes, erythroblasts, and bone cells. Whereas TFR1 serves primarily as a cargo receptor, TFR2 serves primarily to influence cellular signaling events regulating hepcidin expression, erythropoiesis, and bone formation. We proposed that different transferrin forms provide differential signaling properties in this regulation. We thus generated TF mutant mice in which all iron-containing TF was either monoferric N (Tf monoN) or monoferric C (Tf monoC). Compared with Tf monoC mice, the Tf monoN mice demonstrated increased RBC production and increased hepcidin expression relative to iron status (Parrow et al. Blood). Based on observations in β-thalassemic mice treated with exogenous TF (Li et al. Nat Med), we hypothesized that β-thalassemic mice obligate for monoN TF would demonstrate improved erythropoietic and iron parameters compared with β-thalassemic mice obligate for monoC TF. To address this hypothesis, we crossed Hbb th3/+ mice (a mouse model of β-thalassemia intermedia) with Tf monoN and Tf monoC mice. Compared with Hbb th3Tf +/+mice, in Hbb th3/+Tf monoN mice demonstrated significantly increased RBC counts, elevated hemoglobin, improved erythrocyte morphology (Figure 1A-B), decreased splenomegaly, fewer bone marrow erythroblasts, and improvement of ineffective erythropoiesis (as measured by the ratio of progenitors to RBC in the bone marrow). Additionally, serum ERFE was significantly reduced and hepcidin levels were increased in Hbb th3/+Tf monoN relative to Hbb th3/+Tf +/+controls. Conversely, hematological parameters from Hbb th3/+Tf monoC mice were comparable to Hbb th3/+Tf +/+ mice. Similarly, Hbb th3/+Tf monoCmice had no improvements in markers of ineffective erythropoiesis in the bone marrow compared with Hbb th3/+Tf +/+ mice. In summary, we demonstrate that the differential regulatory effects of monoN and monoC TF on erythropoiesis are relevant not only in steady-state, but also in the ineffective erythropoiesis that is characteristic of β-thalassemia. Because both monoN and monoC TF forms can deliver only one iron atom per TF-TFR1 binding event, our findings suggest that the improvements observed only in the Hbb th3/+Tf monoN mice were not due to iron restriction alone. We are now elucidating the mechanisms by which the two TF lobes exert their differential effects on ineffective erythropoiesis and exploring the translational potential of obligate monoN TF in the treatment of β-thalassemia. Figure 1 Figure 1. Disclosures Rivella: Ionis Pharmaceuticals: Consultancy; Meira GTx: Consultancy.


2021 ◽  
Vol 10 (19) ◽  
pp. 2170086
Author(s):  
Tobias A. Bauer ◽  
Natalie K. Horvat ◽  
Oriana Marques ◽  
Sara Chocarro ◽  
Christina Mertens ◽  
...  

GYNECOLOGY ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 300-306
Author(s):  
Aleksandr S. Dukhanin

The review considers features of iron and folic acid (FA) pharmacokinetics, which affect the effective micronutrient support: molecular mechanisms of absorption and distribution, homeostatic processes of maintaining plasma vitamin and mineral levels by the feedback mechanism, including by regulating the deposition. An important characteristic of ferrokinetics is the presence of unique iron exporter ferroportin which is controlled by a family of iron regulatory proteins. Systemic ferrotherapy and oral rout of iron delivery are distinguished. In general, parenteral iron preparation complexes consist of Fe(III) oxide/hydroxide core stabilized by a carbohydrate polymer shell. Once entering the bloodstream, iron complexes are absorbed by resident macrophages of the reticuloendothelial system of the liver, spleen and bone marrow. Systemic Fe(III) preparations are prodrugs, the active part of which, i.e. iron is released in the lysosomal matrix of phagocytes. Oral iron preparations are divided into those containing bivalent (ferrous) and trivalent (ferric) iron. The article discusses factors determining the differences in the absorption of oral ferrous and ferric iron preparation, the spectrum of side effects, as well as key pharmaceutical approaches to increase the tolerance and adherence of ferrotherapy. These include using preparations containing Fe(II) organic compounds that have a lower dissociation rate than inorganic iron salts as well as slowing down the release of the active Fe(II) pharmaceutical substance from the drug. The review pays special attention to folates as iron synergists and examines the features of FA pharmacokinetics, the molecular basis of synergism, and substantiates the use of combined iron and FA preparations.


2021 ◽  
Author(s):  
Amy E. Medlock ◽  
Wided Najahi-Missaoui ◽  
Mesafint T. Shiferaw ◽  
Angela N. Albetel ◽  
William N. Lanzilotta ◽  
...  

Ferrochelatase catalyzes the insertion of ferrous iron into a porphyrin macrocycle to produce the essential cofactor, heme. In humans this enzyme not only catalyzes the terminal step, but also serves a regulatory step in the heme synthesis pathway. Over a dozen crystal structures of human ferrochelatase have been solved and many variants have been characterized kinetically. In addition, hydrogen deuterium exchange, resonance Raman, molecular dynamics, and high level quantum mechanic studies have added to our understanding of  the catalytic cycle of the enzyme. However, an understanding of how the metal ion is delivered and the specific role that active site residues play in catalysis remain open questions. Data are consistent with metal binding and insertion occurring from the side opposite from where pyrrole proton abstraction takes place. To better understand iron delivery and binding as well as the role of conserved residues in the active site, we have constructed and characterized a series of enzyme variants. Crystallographic studies as well as rescue and kinetic analysis of variants were performed. Data from these studies are consistent with the M76 residue playing a role in active site metal binding and formation of a weak iron protein ligand being necessary for product release. Additionally, structural data support a role for E343 in proton abstraction and product release in coordination with a peptide loop composed of Q302, S303 and K304 that act a metal sensor.


2021 ◽  
Vol 22 (12) ◽  
pp. 6493
Author(s):  
Elizabeta Nemeth ◽  
Tomas Ganz

Despite its abundance in the environment, iron is poorly bioavailable and subject to strict conservation and internal recycling by most organisms. In vertebrates, the stability of iron concentration in plasma and extracellular fluid, and the total body iron content are maintained by the interaction of the iron-regulatory peptide hormone hepcidin with its receptor and cellular iron exporter ferroportin (SLC40a1). Ferroportin exports iron from duodenal enterocytes that absorb dietary iron, from iron-recycling macrophages in the spleen and the liver, and from iron-storing hepatocytes. Hepcidin blocks iron export through ferroportin, causing hypoferremia. During iron deficiency or after hemorrhage, hepcidin decreases to allow iron delivery to plasma through ferroportin, thus promoting compensatory erythropoiesis. As a host defense mediator, hepcidin increases in response to infection and inflammation, blocking iron delivery through ferroportin to blood plasma, thus limiting iron availability to invading microbes. Genetic diseases that decrease hepcidin synthesis or disrupt hepcidin binding to ferroportin cause the iron overload disorder hereditary hemochromatosis. The opposite phenotype, iron restriction or iron deficiency, can result from genetic or inflammatory overproduction of hepcidin.


Sign in / Sign up

Export Citation Format

Share Document