scholarly journals Medicago truncatulacopper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation

2017 ◽  
Author(s):  
Marta Senovilla ◽  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
Viviana Escudero ◽  
Igor Kryvoruchko ◽  
...  

Summary• Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper transporter would introduce it into the cell to synthesize cupro-proteins.• COPT family members in model legumeMedicago truncatulawere identified and their expression determined. Yeast complementation assays, confocal microscopy, and phenotypical characterization of aTnt1insertional mutant line were carried out in the nodule-specificM.truncatulaCOPT family member.•Medicago truncatulagenome encodes eight COPT transporters.MtCOPT1(Medtr4g019870) is the only nodule-specificCOPTgene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a copper-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation ofMtCOPT1results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a copper-dependent function, such as cytochrome oxidase activity incopt1-1bacteroids.• These data are consistent with a model in which MtCOPT1 transports copper from the apoplast into nodule cells to provide copper for essential metabolic processes associated with symbiotic nitrogen fixation.

2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Eric del Sastre ◽  
Manuel Tejada-Jiménez ◽  
Camile Larue ◽  
...  

SUMMARYSymbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires of relatively large levels of transition metals. These elements act as cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process participated by a number of metal transporters and small organic molecules that mediate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this non-proteinogenic amino acid forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, a phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would be the result of the altered iron distribution in nas2-1 nodules, as indicated by X-ray fluorescence studies. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.Significance StatementNicotianamine synthesis mediated by MtNAS2 is important for iron allocation for symbiotic nitrogen fixation by rhizobia in Medicago truncatula root nodules.


2009 ◽  
Vol 191 (8) ◽  
pp. 2593-2600 ◽  
Author(s):  
Chrysanthi Kalloniati ◽  
Daniela Tsikou ◽  
Vasiliki Lampiri ◽  
Mariangela N. Fotelli ◽  
Heinz Rennenberg ◽  
...  

ABSTRACT Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an α-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active α-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and δ13C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH3 protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule δ13C abundance suggest the recycling of at least part of the HCO3 − produced by CAA1.


2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Manuel Tejada-Jiménez ◽  
Elena Rosa-Núñez ◽  
Julia Quintana ◽  
...  

ABSTRACTIron is an essential cofactor for symbiotic nitrogen fixation. It is required by many of the enzymes facilitating the conversion of N2into NH4+by endosymbiotic bacteria living within root nodule cells, including signal transduction proteins, O2homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Model legumeMedicago truncatula Ferroportin2(MtFPN2) is a nodule-specific gene that encodes an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature, and in the symbiosome membranes that contain the nitrogen-fixing bacteria in the differentiation and early-fixation zones of the nodules. Loss-of-function ofMtFPN2leads to altered iron distribution and speciation in nodules, which causes a reduction in nitrogenase activity and in biomass production. Using promoters with different tissular activity to driveMtFPN2expression inMtFPN2mutants, we determined that MtFPN2-facilitated iron delivery across symbiosomes is essential for symbiotic nitrogen fixation, while its presence in the vasculature does not seem to play a major role in in the conditions tested.


2020 ◽  
Vol 71 (22) ◽  
pp. 7257-7269
Author(s):  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
María Reguera ◽  
Lorena Novoa-Aponte ◽  
Ana Mijovilovich ◽  
...  

Abstract Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


2019 ◽  
Author(s):  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
María Reguera ◽  
Lorena Novoa-Aponte ◽  
Ana Mijovilovich ◽  
...  

AbstractSymbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living with the nodule cells, a process in which vascular transport is essential. As occurs in root-to-shoot transport, members of the Yellow Stripe-Like (YSL) family of metal transporters should also be required for root-to-nodule metal delivery. The genome of the model legume Medicago truncatula encodes for eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules, and by cortical nodule cells. Reducing expression levels of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role of MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.HighlightMedicago truncatula YSL3 transporter is required for optimal nitrogen fixation in root nodules, mediating iron and zinc distribution in these organs.


2016 ◽  
Author(s):  
Χρυσάνθη Καλλονιάτη

Symbiotic nitrogen fixation in legumes takes place in specialized organs called nodules,which become the main source of assimilated nitrogen for the whole plant. Symbiotic nitro‐gen fixation requires exquisite integration of plant and bacterial metabolism and involvesglobal changes in gene expression and metabolite accumulation in both rhizobia and thehost plant. In order to study the metabolic changes mediated by symbiotic nitrogen fixationon a whole‐plant level, metabolite levels were profiled by gas chromatography–mass spec‐trometry in nodules and non‐symbiotic organs of Lotus japonicus plants uninoculated or in‐oculated with M. loti wt,  ΔnifA or  ΔnifH fix‐ strains. Furthermore, transcriptomic andbiochemical approaches were combined to study sulfur metabolism in nodules, its link tosymbiotic nitrogen fixation, and the effect of nodules on whole‐plant sulfur partitioning andmetabolism. It is well established that nitrogen and sulfur (S) metabolism are tightly en‐twined and sulfur is required for symbiotic nitrogen fixation, however, little is known aboutthe molecular and biochemical mechanisms governing sulfur uptake and assimilation duringsymbiotic nitrogen fixation. Transcript profiling in Lotus japonicus was combined with quan‐tification of S‐metabolite contents and APR activity in nodules and in non‐symbiotic organsof plants uninoculated or inoculated with M. loti wt, ΔnifA or ΔnifH fix‐ strains. Moreover,sulfate uptake and its distribution into different plant organs were analyzed and 35S‐flux intodifferent S‐pools was monitored. Metabolite profiling revealed that symbiotic nitrogen fixa‐tion results in dramatic changes of many aspects of primary and secondary metabolism innodules which leads to global reprogramming of metabolism of the model legume on awhole‐plant level. Moreover, our data revealed that nitrogen fixing nodules represent athiol‐rich organ. Their high APR activity and 35S‐flux into cysteine and its metabolites in com‐bination with the transcriptional up‐regulation of several genes involved in sulfur assimila‐tion highlight the function of nodules as a new site of sulfur assimilation. The higher thiolcontent observed in non‐symbiotic organs of nitrogen fixing plants in comparison touninoculated plants cannot be attributed to local biosynthesis, indicating that nodules couldserve as a novel source of reduced sulfur for the plant, which triggers whole‐plant repro‐gramming of sulfur metabolism. Interestingly, the changes in metabolite profiling and theenhanced thiol biosynthesis in nodules and their impact on the whole‐plant sulfur, carbonand nitrogen economy are dampened in fix‐ plants, which in most respects metabolically re‐sembled uninoculated plants, indicating a strong interaction between nitrogen fixation andsulfur and carbon metabolism.


Sign in / Sign up

Export Citation Format

Share Document