sulfur metabolism
Recently Published Documents


TOTAL DOCUMENTS

649
(FIVE YEARS 196)

H-INDEX

54
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Peng Li ◽  
Wenfeng Yuan ◽  
Yitie Huang ◽  
Caiyu Zhang ◽  
Chide Ni ◽  
...  

Abstract To identify suitable biocatalysts applied in microbial fuel cells (MFCs), Pseudomonas stutzeri S116 isolated from marine sludge was investigated, which possessed excellcent bioelectricity generation ability (BGA). Herein, P. stutzeri as a bioanode and biocathode achieved maximum output voltage (254.2 mV and 226.0 mV), and power density of (765 mW/m2 and 656.6 mW/m2). Complete genome sequencing of P. stutzeri was performed to reveal its potential microbial functions. The results exhibited that the strain was the ecologically dominant Pseudomonas, and its primary annotations were associated with energy production and conversion (6.84%), amino acid transport and metabolism (6.82%) and inorganic ion transport and metabolism (6.77%). The thirty-six genes involved in oxidative phosphorylation indicate that strain possesses an integrated electron transport chain. Moreover, many genes encoding redox mediators (mainly riboflavin and phenazine) were detected in the databases. Simultaneously, thiosulfate oxidization and dissimilatory nitrate reduction were annotated in the sulfur metabolism and nitrogen metabolism pathway. Gene function and cyclic voltammetry (CV) analysis indicated BGA of P. stutzeri probably was attributed to its cytochrome c and redox mediators, which enhance extracellular electron transfer (EET) rate.


mSystems ◽  
2022 ◽  
Author(s):  
Jiulong Zhao ◽  
Hongmei Jing ◽  
Zengmeng Wang ◽  
Long Wang ◽  
Huahua Jian ◽  
...  

The Mariana Trench harbors a substantial number of infective viral particles. However, very little is known about the identity, survival strategy, and potential functions of viruses in the trench sediments.


2021 ◽  
Author(s):  
Md Zohorul Islam ◽  
Melissa Tran ◽  
Tao Xu ◽  
Braden T. Tierney ◽  
Chirag Patel ◽  
...  

Abstract Background: The gut microbiome promotes specific immune responses, and in turn the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditionsMethodology: We searched PubMed, Web of Science, and EMBAS to identify relevant articles to be included in this study. The study was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold-change and the standard error was calculated from the p-values, sample size and fold-change. Results: We screened 3,874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4,208 healthy human controls and 5,957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.54 log fold-change in 5 studies) and 11 studies (+3.75 log fold-change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.24 log fold-change in 6 studies) and decreased in six cancer studies (-0.32 log fold-change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species.Conclusions: The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases.


2021 ◽  
Vol 23 (1) ◽  
pp. 214
Author(s):  
Daria Chlebek ◽  
Tomasz Płociniczak ◽  
Sara Gobetti ◽  
Agata Kumor ◽  
Katarzyna Hupert-Kocurek ◽  
...  

The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.


2021 ◽  
Author(s):  
Shong Lau ◽  
Shani Stern ◽  
Sara Linker ◽  
Ioana Da Silva ◽  
Nako Nakatsuka ◽  
...  

Abstract Human aging is the main risk factor for Parkinson’s disease (PD). To better understand age-related PD pathogenesis, we modeled PD with directly reprogrammed dopaminergic neurons (iDA) which preserve donor aging signatures. By transcriptome analysis and immunohistochemistry on postmortem tissues, we identified a sulfurtransferase, TSTD1, to be upregulated in aged and diseased individuals. TSTD1 catalyzes sulfur transfer from thiosulfate to glutathione (GSH). GSH and cysteine were significantly decreased in dopaminergic (DA) neurons with TSTD1 overexpression. Lower intracellular H2S levels and mitochondrial membrane potential (MMP) were identified in aged, PD iDA, and TSTD1 overexpressing embryonic stem cell (ES)-derived DA neurons. TSTD1 overexpression could lead to GAPDH inhibition and energy deficiency in neurons. We hypothesize that TSTD1 upregulation in aged and PD individuals could disrupt sulfur metabolism which compromises anti-oxidant capacity and energy production in neurons; both of these mechanisms have been implicated as triggers for DA neuronal degeneration in PD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dawei Yang ◽  
Fengwei Jiang ◽  
Xinxin Huang ◽  
Ganwu Li ◽  
Wentong Cai

Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). In contrast to the intestinal E. coli strains that reside in nutrient-rich gut environment, UPEC encounter distinct niches, for instance human urine, which is an oxygen- and nutrient-limited environment. Alpha-ketoglutarate (KG) is an abundant metabolite in renal proximal tubule cells; and previously we showed that two-component signaling system (TCS) KguS/KguR contributes to UPEC colonization of murine urinary tract by promoting the utilization of KG as a carbon source under anaerobic conditions. However, knowledge about the KguR regulon and its impact on UPEC fitness is lacking. In this work, we analyzed transcriptomic and metabolomic changes caused by kguR deletion under anaerobiosis when KG is present. Our results indicated that 620 genes were differentially expressed in the ΔkguR mutant, as compared to the wild type; of these genes, 513 genes were downregulated and 107 genes were upregulated. Genes with substantial changes in expression involve KG utilization, acid resistance, iron uptake, amino acid metabolism, capsule biosynthesis, sulfur metabolism, among others. In line with the transcriptomics data, several amino acids (glutamate, lysine, etc.) and uridine 5′-diphosphogalactose (involved in capsule biosynthesis) were significantly less abundant in the ΔkguR mutant. We then confirmed that the ΔkguR mutant, indeed, was more sensitive to acid stress than the wild type, presumably due to downregulation of genes belonging to the glutamate-dependent acid resistance system. Furthermore, using gene expression and electrophoretic mobility shift assays (EMSAs), we demonstrate that KguR autoregulates its own expression by binding to the kguSR promoter region. Lastly, we performed a genome-wide search of KguR binding sites, and this search yielded an output of at least 22 potential binding sites. Taken together, our data establish that in the presence of KG, KguR broadly impacts the physiology of UPEC under anaerobiosis. These findings greatly further our understanding of KguS/KguR system as well as UPEC pathobiology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12474
Author(s):  
Mónica Torres-Beltrán ◽  
Lluvia Vargas-Gastélum ◽  
Dante Magdaleno-Moncayo ◽  
Meritxell Riquelme ◽  
Juan Carlos Herguera-García ◽  
...  

Marine sediments harbor an outstanding level of microbial diversity supporting diverse metabolic activities. Sediments in the Gulf of Mexico (GoM) are subjected to anthropic stressors including oil pollution with potential effects on microbial community structure and function that impact biogeochemical cycling. We used metagenomic analyses to provide significant insight into the potential metabolic capacity of the microbial community in Southern GoM deep sediments. We identified genes for hydrocarbon, nitrogen and sulfur metabolism mostly affiliated with Alpha and Betaproteobacteria, Acidobacteria, Chloroflexi and Firmicutes, in relation to the use of alternative carbon and energy sources to thrive under limiting growth conditions, and metabolic strategies to cope with environmental stressors. In addition, results show amino acids metabolism could be associated with sulfur metabolism carried out by Acidobacteria, Chloroflexi and Firmicutes, and may play a crucial role as a central carbon source to favor bacterial growth. We identified the tricarboxylic acid cycle (TCA) and aspartate, glutamate, glyoxylate and leucine degradation pathways, as part of the core carbon metabolism across samples. Further, microbial communities from the continental slope and abyssal plain show differential metabolic capacities to cope with environmental stressors such as oxidative stress and carbon limiting growth conditions, respectively. This research combined taxonomic and functional information of the microbial community from Southern GoM sediments to provide fundamental knowledge that links the prokaryotic structure to its potential function and which can be used as a baseline for future studies to model microbial community responses to environmental perturbations, as well as to develop more accurate mitigation and conservation strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengkai Yi ◽  
Jing Xie

Shewanella putrefaciens is a microorganism with strong spoilage potential for aquatic products. This study aimed to investigate the potential spoilage factors of S. putrefaciens by comparative proteomic analysis. The spoilage potential of two strains of S. putrefaciens (00A and 00B) isolated from chilled spoiled bigeye tuna was investigated. The results of total volatile basic nitrogen (TVB-N), trimethylamine (TMA) in fish inoculated with S. putrefaciens, extracellular protease activity of S. putrefaciens, and degradation of fish proteins indicated that the spoilage potential of S. putrefaciens 00A was much higher than that of 00B. Fish proteins are usually degraded by spoilage microorganism proteases into small molecular peptides and amino acids, which are subsequently degraded into spoilage metabolites in bacterial cells, leading to deterioration of fish quality. Thus, proteomic analysis of the extracellular and intracellular proteins of 00A vs. 00B was performed. The results indicated that the intracellular differentially expressed protein (IDEP) contained 243 upregulated proteins and 308 downregulated proteins, while 78 upregulated proteins and 4 downregulated proteins were found in the extracellular differentially expressed protein (EDEP). GO annotation revealed that IDEP and EDEP were mainly involved in cellular and metabolic processes. KEGG annotation results showed that the upregulated proteins in IDEP were mainly involved in sulfur metabolism, amino acid metabolism, and aminoacyl-tRNA biosynthesis, while downregulated proteins were related to propanoate metabolism. In contrast, EDEP of KEGG annotation was mainly involved in ribosomes, quorum sensing, and carbohydrate metabolism. Proteins associated with spoilage containing sulfur metabolism (sulfite reductase, sulfate adenylyltransferase, adenylyl-sulfate kinase), amino acid metabolism (biosynthetic arginine decarboxylase, histidine ammonia-lyase), trimethylamine metabolism (trimethylamine-N-oxide reductase), and extracellular proteins (ATP-dependent Clp protease proteolytic subunit) were identified as upregulated. These proteins may play a key role in the spoilage potential of S. putrefaciens. These findings would contribute to the identification of key spoilage factors and understanding of the spoilage mechanism of microorganisms.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2597
Author(s):  
Sahar Faraji ◽  
Parviz Heidari ◽  
Hoorieh Amouei ◽  
Ertugrul Filiz ◽  
Abdullah ◽  
...  

Various kinds of primary metabolisms in plants are modulated through sulfate metabolism, and sulfotransferases (SOTs), which are engaged in sulfur metabolism, catalyze sulfonation reactions. In this study, a genome-wide approach was utilized for the recognition and characterization of SOT family genes in the significant nutritional crop potato (Solanum tuberosum L.). Twenty-nine putative StSOT genes were identified in the potato genome and were mapped onto the nine S. tuberosum chromosomes. The protein motifs structure revealed two highly conserved 5′-phosphosulfate-binding (5′ PSB) regions and a 3′-phosphate-binding (3′ PB) motif that are essential for sulfotransferase activities. The protein–protein interaction networks also revealed an interesting interaction between SOTs and other proteins, such as PRTase, APS-kinase, protein phosphatase, and APRs, involved in sulfur compound biosynthesis and the regulation of flavonoid and brassinosteroid metabolic processes. This suggests the importance of sulfotransferases for proper potato growth and development and stress responses. Notably, homology modeling of StSOT proteins and docking analysis of their ligand-binding sites revealed the presence of proline, glycine, serine, and lysine in their active sites. An expression essay of StSOT genes via potato RNA-Seq data suggested engagement of these gene family members in plants’ growth and extension and responses to various hormones and biotic or abiotic stimuli. Our predictions may be informative for the functional characterization of the SOT genes in potato and other nutritional crops.


Sign in / Sign up

Export Citation Format

Share Document