scholarly journals Restoring the pattern of proteoglycan sulphation in perineuronal nets corrects age-related memory loss

2020 ◽  
Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractMemory loss is a usual consequence of ageing and aged mice show progressive deficits in memory tasks. In aged brains, perineuronal nets (PNNs), which are implicated in plasticity and memory, become inhibitory due to decreased 6-sulphation of their glycan chains (C6S). Removal of PNNs or digestion of their glycosaminoglycans rescued age-related memory loss. Premature reduction of permissive C6S by transgenic deletion of chondroitin 6-sulfotransferase led to very early memory loss. However, restoring C6S levels in aged animals by AAV delivery or transgenic expression of 6-sulfotransferase restored memory. Low C6S levels caused loss of cortical long-term potentiation, which was restored by AAV-mediated 6-sulfotransferase delivery. The study shows that loss of C6S in the aged brain leads to declining memory and cognition. Age-related memory impairment was restored by C6S replacement or other interventions targeting perineuronal nets

Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Maglione ◽  
Gaga Kochlamazashvili ◽  
Tobias Eisenberg ◽  
Bence Rácz ◽  
Eva Michael ◽  
...  

AbstractAging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.


2015 ◽  
Vol 112 (36) ◽  
pp. E5078-E5087 ◽  
Author(s):  
G. Aleph Prieto ◽  
Shikha Snigdha ◽  
David Baglietto-Vargas ◽  
Erica D. Smith ◽  
Nicole C. Berchtold ◽  
...  

In the aged brain, synaptic plasticity and memory show increased vulnerability to impairment by the inflammatory cytokine interleukin 1β (IL-1β). In this study, we evaluated the possibility that synapses may directly undergo maladaptive changes with age that augment sensitivity to IL-1β impairment. In hippocampal neuronal cultures, IL-1β increased the expression of the IL-1 receptor type 1 and the accessory coreceptor AcP (proinflammatory), but not of the AcPb (prosurvival) subunit, a reconfiguration that potentiates the responsiveness of neurons to IL-1β. To evaluate whether synapses develop a similar heightened sensitivity to IL-1β with age, we used an assay to track long-term potentiation (LTP) in synaptosomes. We found that IL-1β impairs LTP directly at the synapse and that sensitivity to IL-1β is augmented in aged hippocampal synapses. The increased synaptic sensitivity to IL-1β was due to IL-1 receptor subunit reconfiguration, characterized by a shift in the AcP/AcPb ratio, paralleling our culture data. We suggest that the age-related increase in brain IL-1β levels drives a shift in IL-1 receptor configuration, thus heightening the sensitivity to IL-1β. Accordingly, selective blocking of AcP-dependent signaling with Toll–IL-1 receptor domain peptidomimetics prevented IL-1β–mediated LTP suppression and blocked the memory impairment induced in aged mice by peripheral immune challenge (bacterial lipopolysaccharide). Overall, this study demonstrates that increased AcP signaling, specifically at the synapse, underlies the augmented vulnerability to cognitive impairment by IL-1β that occurs with age.


2010 ◽  
Vol 19 (3) ◽  
pp. 1021-1033 ◽  
Author(s):  
Alexandra Auffret ◽  
Vanessa Gautheron ◽  
Mark P. Mattson ◽  
Jean Mariani ◽  
Catherine Rovira

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Daniela Puzzo ◽  
Roberto Piacentini ◽  
Mauro Fá ◽  
Walter Gulisano ◽  
Domenica D Li Puma ◽  
...  

The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oAβ) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oAβ and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oAβ, also oTau can bind to amyloid precursor protein (APP). Moreover, efficient intra-neuronal uptake of oAβ and oTau requires expression of APP. Finally, the toxic effect of both extracellular oAβ and oTau on memory and LTP is dependent upon APP since APP-KO mice were resistant to oAβ- and oTau-induced defects in spatial/associative memory and LTP. Thus, APP might serve as a common therapeutic target against Alzheimer's Disease (AD) and a host of other neurodegenerative diseases characterized by abnormal levels of Aβ and/or Tau.


2016 ◽  
Vol 41 ◽  
pp. 187-199 ◽  
Author(s):  
Perla Moreno-Castilla ◽  
Luis F. Rodriguez-Duran ◽  
Kioko Guzman-Ramos ◽  
Alejandro Barcenas-Femat ◽  
Martha L. Escobar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document