scholarly journals A Systematic Analysis of Mosquito-Microbiome Biosynthetic Gene Clusters Reveals Antimalarial Siderophores that Reduce Mosquito Reproduction Capacity

2020 ◽  
Author(s):  
Jack G. Ganley ◽  
Ashmita Pandey ◽  
Kayla Sylvester ◽  
Kuan-Yi Lu ◽  
Maria Toro-Moreno ◽  
...  

ABSTRACTAdvances in infectious disease control strategies through genetic manipulation of insect microbiomes have heightened interest in microbially produced small molecules within mosquitoes. Herein, 33 mosquito-associated bacterial genomes were mined and over 700 putative biosynthetic gene clusters (BGCs) were identified, 135 of which belong to known classes of BGCs. After an in-depth analysis of the 135 BGCs, iron-binding siderophores were chosen for further investigation due to their high abundance and well-characterized bioactivities. Through various metabolomic strategies, eight siderophore scaffolds were identified in six strains of mosquito-associated bacteria. Among these, serratiochelin A and pyochelin were found to reduce female Anopheles gambiae overall fecundity likely by lowering their blood feeding rate. Serratiochelin A and pyochelin were further found to inhibit the Plasmodium parasite asexual blood and liver stages in vitro. Our work supplies a bioinformatic resource for future mosquito microbiome studies and highlights an understudied source of bioactive small molecules.

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Gajender Aleti ◽  
Jonathon L. Baker ◽  
Xiaoyu Tang ◽  
Ruth Alvarez ◽  
Márcia Dinis ◽  
...  

ABSTRACT Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world’s most common chronic diseases. IMPORTANCE The healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world’s most common and costly chronic infectious diseases and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome and how it devolves in the case of two prominent diseases.


2018 ◽  
Vol 115 (28) ◽  
pp. E6650-E6658 ◽  
Author(s):  
Alexander M. Boutanaev ◽  
Anne E. Osbourn

Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 734 ◽  
Author(s):  
Yawei Zhao ◽  
Guoquan Li ◽  
Yunliang Chen ◽  
Yinhua Lu

The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.


Cell ◽  
2014 ◽  
Vol 158 (6) ◽  
pp. 1402-1414 ◽  
Author(s):  
Mohamed S. Donia ◽  
Peter Cimermancic ◽  
Christopher J. Schulze ◽  
Laura C. Wieland Brown ◽  
John Martin ◽  
...  

2018 ◽  
Vol 200 (21) ◽  
Author(s):  
Karla J. Esquilín-Lebrón ◽  
Tye O. Boynton ◽  
Lawrence J. Shimkets ◽  
Michael G. Thomas

ABSTRACTOne mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 fromMyxococcus xanthusDK1622 for characterization. TheM. xanthusDK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination ofin vivoandin vitroassays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping ofM. xanthusDK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a “universal” MLP for generating functional hybrid NRPSs.IMPORTANCEMbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP fromMyxococcus xanthusDK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a “universal” MLP during the construction of functional hybrid NRPSs.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Yunkun Liu ◽  
Weixin Tao ◽  
Shishi Wen ◽  
Zhengyuan Li ◽  
Anna Yang ◽  
...  

ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, an RNA-guided nuclease for specific genome editing in vivo, has been adopted in a wide variety of organisms. In contrast, the in vitro application of the CRISPR/Cas9 system has rarely been reported. We present here a highly efficient in vitro CRISPR/Cas9-mediated editing (ICE) system that allows specific refactoring of biosynthetic gene clusters in Streptomyces bacteria and other large DNA fragments. Cleavage by Cas9 of circular pUC18 DNA was investigated here as a simple model, revealing that the 3′→5′ exonuclease activity of Cas9 generates errors with 5 to 14 nucleotides (nt) randomly missing at the editing joint. T4 DNA polymerase was then used to repair the Cas9-generated sticky ends, giving substantial improvement in editing accuracy. Plasmid pYH285 and cosmid 10A3, harboring a complete biosynthetic gene cluster for the antibiotics RK-682 and holomycin, respectively, were subjected to the ICE system to delete the rkD and homE genes in frame. Specific insertion of the ampicillin resistance gene (bla) into pYH285 was also successfully performed. These results reveal the ICE system to be a rapid, seamless, and highly efficient way to edit DNA fragments, and a powerful new tool for investigating and engineering biosynthetic gene clusters. IMPORTANCE Recent improvements in cloning strategies for biosynthetic gene clusters promise rapid advances in understanding and exploiting natural products in the environment. For manipulation of such biosynthetic gene clusters to generate valuable bioactive compounds, efficient and specific gene editing of these large DNA fragments is required. In this study, a highly efficient in vitro DNA editing system has been established. When combined with end repair using T4 DNA polymerase, Cas9 precisely and seamlessly catalyzes targeted editing, including in-frame deletion or insertion of the gene(s) of interest. This in vitro CRISPR editing (ICE) system promises a step forward in our ability to engineer biosynthetic pathways.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hooi-Leng Ser ◽  
Loh Teng-Hern Tan ◽  
Wen-Si Tan ◽  
Wai-Fong Yin ◽  
Kok-Gan Chan

The contribution of streptomycetes to human health is undeniably important and significant, given that these filamentous microbes can produce interesting compounds that can be used to cure deadly infections and even cancer. Isolated from the east coast of Peninsular Malaysia, Streptomyces sp. MUSC 14 has shown significant antioxidant capacity. The current study explores the genomic potential of MUSC 14 via a genome mining approach. The genome size of MUSC 14 is 10,274,825 bp with G + C content of 71.3 %. AntiSMASH analysis revealed a total of nine biosynthetic gene clusters (with more than 80 % similarities to known gene clusters). This information serves as an important foundation for subsequent studies, particularly the purification and isolation of bioactive compounds by genetic manipulation techniques.


2018 ◽  
Author(s):  
Gajender Aleti ◽  
Jonathon L. Baker ◽  
Xiaoyu Tang ◽  
Ruth Alvarez ◽  
Márcia Dinis ◽  
...  

ABSTRACTSmall molecules are the primary communication media of the microbial world. Recent bioinformatics studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria, and their connection to health versus disease, in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for over 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals with either good oral health, dental caries, or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Co-abundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in health, but greatly reduced in dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homology to products of the predicted BGC classes. Together, these findings greatly expand the number of known biosynthetic pathways present in the oral microbiome and provide an atlas for experimental characterization of these abundant, yet poorly understood, molecules and socio-chemical relationships, which impact the development of caries and periodontitis, two of the world’s most common chronic diseases.IMPORTANCEThe healthy oral microbiome is symbiotic with the human host, importantly providing colonization resistance against potential pathogens. Dental caries and periodontitis are two of the world’s most common and costly chronic infectious diseases, and are caused by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, often encoded by BGCs, are the primary communication media of bacterial communities, and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This study provides a comprehensive mapping of the BGC repertoire of the human oral microbiome and identifies major differences in health compared to disease. Furthermore, BGC representation and expression is linked to the abundance of particular oral bacterial taxa in health versus dental caries and periodontitis. Overall, this study provides a significant insight into the chemical communication network of the healthy oral microbiome, and how it devolves in the case of two prominent diseases.


Sign in / Sign up

Export Citation Format

Share Document