myxococcus xanthus
Recently Published Documents


TOTAL DOCUMENTS

1096
(FIVE YEARS 109)

H-INDEX

74
(FIVE YEARS 6)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7483
Author(s):  
Joachim J. Hug ◽  
Nicolas A. Frank ◽  
Christine Walt ◽  
Petra Šenica ◽  
Fabian Panter ◽  
...  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse group of natural products. They feature a wide range of intriguing post-translational modifications, as exemplified by the biarylitides. These are a family of cyclic tripeptides found in Planomonospora, carrying a biaryl linkage between two aromatic amino acids. Recent genomic analyses revealed that the minimal biosynthetic prerequisite of biarylitide biosynthesis consists of only one ribosomally synthesized pentapeptide precursor as the substrate and a modifying cytochrome-P450-dependent enzyme. In silico analyses revealed that minimal biarylitide RiPP clusters are widespread among natural product producers across phylogenetic borders, including myxobacteria. We report here the genome-guided discovery of the first myxobacterial biarylitide MeYLH, termed Myxarylin, from Pyxidicoccus fallax An d48. Myxarylin was found to be an N-methylated tripeptide that surprisingly exhibits a C–N biaryl crosslink. In contrast to Myxarylin, previously isolated biarylitides are N-acetylated tripeptides that feature a C–C biaryl crosslink. Furthermore, the formation of Myxarylin was confirmed by the heterologous expression of the identified biosynthetic genes in Myxococcus xanthus DK1622. These findings expand the structural and biosynthetic scope of biarylitide-type RiPPs and emphasize the distinct biochemistry found in the myxobacterial realm.


Author(s):  
Joachim J. Hug ◽  
Nicolas A. Frank ◽  
Christine Walt ◽  
Petra Šenica ◽  
Fabian Panter ◽  
...  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse group of natural products. They feature a wide range of intriguing posttranslational modifications as exemplified by the biarylitides. These are a family of cyclic tripeptides found in Planomonospora, carrying a biaryl-linkage between two aromatic amino acids. Recent genomic analyses revealed the minimal biosynthetic prerequisite of biarylitide biosynthesis consisting of only one ribosomally synthesized pentapeptide precursor as substrate and a modifying cytochrome P450 dependent enzyme. In silico analyses revealed that the minimal biarylitide RiPP clusters are widespread among natural product producers across phylogenetic borders including myxobacteria. We report here the genome-guided discovery of the first myxobacterial biarylitide MeYLH termed Myxarylin from Pyxidicoccus fallax An d48. Myxarylin was found to be an N-methylated tripeptide surprisingly exhibiting a C–N biaryl crosslink. In contrast to Myxarylin, previously isolated biarylitides are N-acetylated tripeptides featuring a C–C biaryl crosslink. Furthermore, the formation of Myxarylin was confirmed by heterologous expression of the identified biosynthetic genes in Myxococcus xanthus DK1622. These findings expand the structural and biosynthetic scope of biarylitide type RiPPs and emphasize the distinct biochemistry found in the myxobacterial realm.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2808
Author(s):  
Yongmei Lyu ◽  
Feng Zheng ◽  
Chuanxing Qiu ◽  
Meng Wang ◽  
Dujun Wang ◽  
...  

Glucosamine (GlcN) is a widely used food supplement. Hence, enormous attention has been concerned with enzymatic production of GlcN owing to its advantage over a chemical approach. In this study, a previously unstudied chitinase gene (MxChi) in the genome of Myxococcus xanthus was cloned, expressed in recombinant soluble form and purified to homogeneity. TLC-, UPLC-, and microplate-reader- based activity tests confirmed MxChi hydrolyzes colloidal chitin to chitobiose as sole product. The optimal catalytic pH and temperature of MxChi was identified as 7.0 and 55 °C, respectively. MxChi exhibited 80% activity after 72 h incubation at 37 °C. The site-directed mutagenesis revealed that the amino acids D323A, D325A, and E327A of MxChi were in the DXDXE catalytic motif of GH18. When coupled with β-N-acetylhexosaminidase (SnHex) and deacetylase (CmCBDA), the enzyme allowed one-pot extraction of GlcN from colloidal chitin and shrimp shell. The optimal condition was 37 °C, pH 8.0, and 1/3/16.5 (MxChi/SnHex/CmCBDA), conducted by orthogonal design for the enzymatic cascades. Under this condition, the yield of GlcN was 26.33 mg from 400 mg shrimp shell. Facile recombinant in E. coli, robust thermostability and pure product herein makes newly discovered chitinase a valuable candidate for the green recycling of chitin rich waste.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna L. McLoon ◽  
Max E. Boeck ◽  
Marc Bruckskotten ◽  
Alexander C. Keyel ◽  
Lotte Søgaard-Andersen

Abstract Background The Myxococcales are well known for their predatory and developmental social processes, and for the molecular complexity of regulation of these processes. Many species within this order have unusually large genomes compared to other bacteria, and their genomes have many genes that are unique to one specific sequenced species or strain. Here, we describe RNAseq based transcriptome analysis of the FruA regulon of Myxococcus xanthus and a comparative RNAseq analysis of two Myxococcus species, M. xanthus and Myxococcus stipitatus, as they respond to starvation and begin forming fruiting bodies. Results We show that both species have large numbers of genes that are developmentally regulated, with over half the genome showing statistically significant changes in expression during development in each species. We also included a non-fruiting mutant of M. xanthus that is missing the transcriptional regulator FruA to identify the direct and indirect FruA regulon and to identify transcriptional changes that are specific to fruiting and not just the starvation response. We then identified Interpro gene ontologies and COG annotations that are significantly up- or down-regulated during development in each species. Our analyses support previous data for M. xanthus showing developmental upregulation of signal transduction genes, and downregulation of genes related to cell-cycle, translation, metabolism, and in some cases, DNA replication. Gene expression in M. stipitatus follows similar trends. Although not all specific genes show similar regulation patterns in both species, many critical developmental genes in M. xanthus have conserved expression patterns in M. stipitatus, and some groups of otherwise unstudied orthologous genes share expression patterns. Conclusions By identifying the FruA regulon and identifying genes that are similarly and uniquely regulated in two different species, this work provides a more complete picture of transcription during Myxococcus development. We also provide an R script to allow other scientists to mine our data for genes whose expression patterns match a user-selected gene of interest.


2021 ◽  
Vol 10 (43) ◽  
Author(s):  
Dustin Joshua Vollmann ◽  
Tobias Busche ◽  
Christian Rückert ◽  
Markus Nett

Myxobacteria exhibit multicellular swarming behavior, which depends on the coordination of cell motility. Unlike other myxobacteria, Myxococcus xanthus NM is not capable of forming swarms due to a defective motility system. Here, we present the 9.35-Mbp genome sequence of this nonmotile myxobacterium.


Author(s):  
Ye Wang ◽  
Xin-jing Yue ◽  
Shu-fei Yuan ◽  
Yu Hong ◽  
Wei-feng Hu ◽  
...  

The biosynthetic genes for secondary metabolites are often clustered into giant operons with no transcription terminator before the end. The long transcripts are frangible and the transcription efficiency declines along with the process. Internal promoters might occur in operons to coordinate the transcription of individual genes, but their effects on the transcription of operon genes and the yield of metabolites have been less investigated. Epothilones are a kind of antitumor polyketides synthesized by seven multifunctional enzymes encoded by a 56-kb operon. In this study, we identified multiple internal promoters in the epothilone operon. We performed CRISPR-dCas9–mediated transcription activation of internal promoters, combined activation of different promoters, and activation in different epothilone-producing M. xanthus strains. We found that activation of internal promoters in the operon was able to promote the gene transcription, but the activation efficiency was distinct from the activation of separate promoters. The transcription of genes in the operon was influenced by not only the starting promoter but also internal promoters of the operon; internal promoters affected the transcription of the following and neighboring upstream/downstream genes. Multiple interferences between internal promoters thus changed the transcriptional profile of operon genes and the production of epothilones. Better activation efficiency for the gene transcription and the epothilone production was obtained in the low epothilone-producing strains. Our results highlight that interactions between promoters in the operon are critical for the gene transcription and the metabolite production efficiency.


2021 ◽  
Author(s):  
Sofya Kuzmich ◽  
Patrick Blumenkamp ◽  
Doreen Meier ◽  
Alexander Goesmann ◽  
Anke Becker ◽  
...  

Myxococcus xanthus has a nutrient-regulated biphasic lifecycle forming predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. The second messenger c-di-GMP is essential during both stages of the lifecycle; however, different enzymes involved in c-di-GMP synthesis and degradation as well as several c-di-GMP receptors are important during distinct lifecycle stages. To address this stage specificity, we determined transcript levels using RNA-seq and transcription start sites using Cappable-seq during growth and development at a genome-wide scale. All 70 genes encoding c-di-GMP associated proteins were expressed, with 28 up-regulated and 10 down-regulated during development. In particular, the three genes encoding enzymatically active proteins with a stage-specific function were expressed stage-specifically. By combining operon mapping with published ChIP-seq data for MrpC (Robinson et al., 2014), the CRP-like master regulator of development, we identified nine developmentally regulated genes as regulated by MrpC. In particular, MrpC directly represses expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development and responsible for the c-di-GMP increase during development. Moreover, MrpC directly activates transcription of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3,3 cGAMP in vitro and is essential for development. Thereby, MrpC regulates and curbs the cellular pools of c-di-GMP and 3,3 cGAMP during development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity. MrpC is important for this regulation, thereby being a key regulator of developmental cyclic di-nucleotide metabolism in M. xanthus.


2021 ◽  
Vol 9 (10) ◽  
pp. 2079
Author(s):  
Ramith R. Nair ◽  
Gregory J. Velicer

Predator impacts on prey diversity are often studied among higher organisms over short periods, but microbial predator-prey systems allow examination of prey-diversity dynamics over evolutionary timescales. We previously showed that Escherichia coli commonly evolved minority mucoid phenotypes in response to predation by the bacterial predator Myxococcus xanthus by one time point of a coevolution experiment now named MyxoEE-6. Here we examine mucoid frequencies across several MyxoEE-6 timepoints to discriminate between the hypotheses that mucoids were increasing to fixation, stabilizing around equilibrium frequencies, or heading to loss toward the end of MyxoEE-6. In four focal coevolved prey populations, mucoids rose rapidly early in the experiment and then fluctuated within detectable minority frequency ranges through the end of MyxoEE-6, generating frequency dynamics suggestive of negative frequency-dependent selection. However, a competition experiment between mucoid and non-mucoid clones found a predation-specific advantage of the mucoid clone that was insensitive to frequency over the examined range, leaving the mechanism that maintains minority mucoidy unresolved. The advantage of mucoidy under predation was found to be associated with reduced population size after growth (productivity) in the absence of predators, suggesting a tradeoff between productivity and resistance to predation that we hypothesize may reverse mucoid vs non-mucoid fitness ranks within each MyxoEE-6 cycle. We also found that mucoidy was associated with diverse colony phenotypes and diverse candidate mutations primarily localized in the exopolysaccharide operon yjbEFGH. Collectively, our results show that selection from predatory bacteria can generate apparently stable sympatric phenotypic polymorphisms within coevolving prey populations and also allopatric diversity across populations by selecting for diverse mutations and colony phenotypes associated with mucoidy. More broadly, our results suggest that myxobacterial predation increases long-term diversity within natural microbial communities.


2021 ◽  
Author(s):  
Linnea J. Ritchie ◽  
Erin R. Curtis ◽  
Kimberly A. Murphy ◽  
Roy D. Welch

Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as Adventurous (A) and Social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype; recorded and measured swarm expansion using time-lapse microscopy; and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allow us to identify some phenotypes as improbable ‘outliers’ within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations.


Sign in / Sign up

Export Citation Format

Share Document