scholarly journals Light pollution affects West Nile virus exposure risk across Florida

2020 ◽  
Author(s):  
Meredith E. Kernbach ◽  
Lynn B. Martin ◽  
Thomas R. Unnasch ◽  
Richard J. Hall ◽  
Rays H.Y. Jiang ◽  
...  

AbstractEmerging infectious diseases (EIDs), including zoonotic arboviruses, present a global health threat. Multiple components of human land use change have been linked to arboviral emergence, but one pervasive factor that has received comparatively little attention is light pollution. Although often considered a component of built environments, artificial light at night (ALAN) outpaces the growth and spatial extent of urbanization, and thus affects areas where human population density and anthropogenic land changes are modest. West Nile virus (WNV) emergence has been described as peri-urban, but recent research suggests that its relative ubiquity in human-altered environments might actually be due to ALAN. Indeed, we found previously that experimental ALAN exposure enhanced avian competence to transmit WNV to mosquitoes. In the present study, we asked whether such organismal effects manifest ecologically by determining whether WNV exposure among sentinel chickens in Florida is related to local ALAN conditions. We found strong support for a nonlinear relationship between ALAN and WNV exposure in chickens with peak WNV risk occurring at low ALAN levels. Importantly, effects of ALAN on WNV exposure were stronger than other aspects of urbanization; only ambient temperature in the month prior to sampling had a comparable effect to ALAN. These results represent the first field evidence that ALAN might affect infectious disease exposure risk. We advocate for further research on how ALAN influences zoonotic risk, as well as efforts to study alternative nighttime lighting methods to reduce such risk.Significance StatementLight pollution associated with human development is a globally pervasive and rapidly expanding anthropogenic stressor; but despite documented effects on host immune functions and vector behaviors, how it affects infectious disease risk is unknown. Using data from the Florida Department of Health arbovirus surveillance program, we show that light pollution is a stronger predictor of variation in West Nile virus (WNV) exposure risk than many other previously implicated anthropogenic and natural environmental variables. Light pollution effects are nonlinear, so risk is highest in areas with dim light pollution. Our results highlight a new way that light pollution might affect human and wildlife health.

2019 ◽  
Vol 286 (1907) ◽  
pp. 20191051 ◽  
Author(s):  
Meredith E. Kernbach ◽  
Daniel J. Newhouse ◽  
Jeanette M. Miller ◽  
Richard J. Hall ◽  
Justin Gibbons ◽  
...  

Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow ( Passer domesticus ), an urban-dwelling avian reservoir host of West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissible viral titres for 2 days longer than controls but did not experience greater WNV-induced mortality during this window. Transcriptionally, ALAN altered the expression of gene regulatory networks including key hubs (OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemination (SOCS). Despite mounting anti-viral immune responses earlier, transcriptomic signatures indicated that ALAN-exposed individuals probably experienced pathogen-induced damage and immunopathology, potentially due to evasion of immune effectors. A simple mathematical modelling exercise indicated that ALAN-induced increases of host infectious-to-vector period could increase WNV outbreak potential by approximately 41%. ALAN probably affects other host and vector traits relevant to transmission, and additional research is needed to advise the management of zoonotic diseases in light-polluted areas.


2005 ◽  
Vol 273 (1582) ◽  
pp. 109-117 ◽  
Author(s):  
Vanessa O Ezenwa ◽  
Marvin S Godsey ◽  
Raymond J King ◽  
Stephen C Guptill

2018 ◽  
Author(s):  
M. E. Kernbach ◽  
J. M. Miller ◽  
R. J. Hall ◽  
T. R. Unnasch ◽  
N. D. Burkett-Cadena ◽  
...  

One sentence summaryLight pollution increases host infectiousness.AbstractLight pollution is a growing problem, but its impacts on infectious disease risk have not been considered. Previous research has revealed that dim light at night (dLAN) dysregulates various immune functions and biorhythms, which hints that dLAN could change the risk of disease epidemics. Here, we demonstrate that dLAN enhances infectiousness of the house sparrow (Passer domesticus), an urban-dwelling avian host of West Nile virus (WNV). Sparrows exposed to dLAN maintained viral titers above the transmission threshold to a biting vector (105 plaque-forming units) for two days longer than controls but did not die at higher rates. A mathematical model revealed that such effects could increase WNV outbreak potential by ~41%. dLAN likely affects other host and vector traits relevant to transmission, so additional research is needed to advise management of zoonotic diseases in light polluted areas.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Meredith E. Kernbach ◽  
Lynn B. Martin ◽  
Thomas R. Unnasch ◽  
Richard J. Hall ◽  
Rays H. Y. Jiang ◽  
...  

Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.


2011 ◽  
Vol 11 (5) ◽  
pp. 551-557 ◽  
Author(s):  
Marco Tamba ◽  
Paolo Bonilauri ◽  
Romeo Bellini ◽  
Mattia Calzolari ◽  
Alessandro Albieri ◽  
...  

Author(s):  
José F. Téllez-Zenteno ◽  
Gary Hunter ◽  
Lizbeth Hernández-Ronquillo ◽  
Edrish Haghir

Abstract:Background:West Nile virus (WNV) is a virus of the family Flaviviridae. The main route of human infection is through the bite of an infected mosquito. Approximately 90% of WNV infections in humans are asymptomatic, but neurologic manifestations can be severe.Methods:This study reviews the clinical profile of cases with neuroinvasive West Nile infection (NWNI) reported by the Surveillance program of the government of Saskatchewan in the Saskatoon Health Region (SHR). In 2007, 1456 cases of human West Nile cases were reported by the government of Saskatchewan in the whole province. One hundred and thirteen cases had severe symptoms of NWNI (8%), 1172 (80%) cases had mild symptoms of WNI and 171 (12%) had asymptomatic disease. Three hundred and fifty six cases were reported in the SHR, where 57 (16%) fulfilled criteria for NWNI.Results:From the 57 cases, 39 (68%) were females. Nine (16%) patients had a history of recent camping, two (4%) reported outdoor sports and four (8%) reported outdoor activities not otherwise specified. Twenty five patients had headache (43.9%), 25 confusion (42.1%), 23 meningitis (40.4%), 17 encephalitis (29.8%), 14 encephalopathy (24.6%), 11 meningoencephalitis (19.3%), 10 tremor (17.5%), acute flaccid paralysis 10 (17.5%), myoclonus 1 (1.8%), nystagmus 2 (3.5%), diplopia 2 (3.5%), dizziness 2 (3.5%). Three patients died related with comorbidities during admission.Conclusion:During a year of high occurrence of WNI in Saskatchewan, 16% of cases developed NWNI. The recognition of neurological complications associated with WNI is important to improve their referral to tertiary centers.


Sign in / Sign up

Export Citation Format

Share Document