scholarly journals IPSE, a Parasite-Derived, Host Immunomodulatory Infiltrin Protein, Alleviates Resiniferatoxin-Induced Bladder Pain

Author(s):  
Kenji Ishida ◽  
Evaristus C. Mbanefo ◽  
Loc Le ◽  
Olivia Lamanna ◽  
Luke F. Pennington ◽  
...  

AbstractThe transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor is an important mediator of nociception and its expression is enriched in nociceptive neurons. TRPV1 signaling has been implicated in bladder pain and is a potential analgesic target. Resiniferatoxin is the most potent known agonist of TRPV1. Acute exposure of the rat bladder to resiniferatoxin has been demonstrated to result in pain-related freezing and licking behaviors that are alleviated by virally encoded IL-4. The interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE) is a powerful inducer of IL-4 secretion, and is also known to alter host cell transcription through a nuclear localization sequence-dependent mechanism. We previously reported that IPSE ameliorates ifosfamide-induced bladder pain in an IL-4- and nuclear localization sequence-dependent manner. We hypothesized that pre-administration of IPSE to resiniferatoxin-challenged mice would dampen pain-related behaviors. IPSE indeed lessened resiniferatoxin-triggered freezing behaviors in mice. This was a nuclear localization sequence-dependent phenomenon, since administration of a nuclear localization sequence mutant version of IPSE abrogated IPSE’s analgesic effect. In contrast, IPSE’s analgesic effect did not seem IL-4-dependent, since use of anti-IL-4 antibody in mice given both IPSE and resiniferatoxin did not dramatically affect freezing behaviors. RNA-Seq analysis of resiniferatoxin- and IPSE-exposed bladders revealed differential expression of TNF/NF-κb-related signaling pathway genes. In vitro testing of IPSE uptake by urothelial cells and TRPV1-expressing neuronal cells showed uptake by both cell types. Thus, IPSE’s nuclear localization sequence-dependent therapeutic effects on TRPV1-mediated bladder pain may act on TRPV1-expressing neurons and/or may rely upon urothelial mechanisms.

2020 ◽  
Vol 16 ◽  
pp. 174480692097009
Author(s):  
Kenji Ishida ◽  
Evaristus C Mbanefo ◽  
Loc Le ◽  
Olivia Lamanna ◽  
Luke F Pennington ◽  
...  

The transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor is an important mediator of nociception and its expression is enriched in nociceptive neurons. TRPV1 signaling has been implicated in bladder pain and is a potential analgesic target. Resiniferatoxin is the most potent known agonist of TRPV1. Acute exposure of the rat bladder to resiniferatoxin has been demonstrated to result in pain-related freezing and licking behaviors that are alleviated by virally encoded IL-4. The interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE) is a powerful inducer of IL-4 secretion, and is also known to alter host cell transcription through a nuclear localization sequence-based mechanism. We previously reported that IPSE ameliorates ifosfamide-induced bladder pain in an IL-4- and nuclear localization sequence-dependent manner. We hypothesized that pre-administration of IPSE to resiniferatoxin-challenged mice would dampen pain-related behaviors. IPSE indeed lessened resiniferatoxin-triggered freezing behaviors in mice. This was a nuclear localization sequence-dependent phenomenon, since administration of a nuclear localization sequence mutant version of IPSE abrogated IPSE’s analgesic effect. In contrast, IPSE’s analgesic effect did not seem IL-4-dependent, since use of anti-IL-4 antibody in mice given both IPSE and resiniferatoxin did not significantly affect freezing behaviors. RNA-Seq analysis of resiniferatoxin- and IPSE-exposed bladders revealed differential expression of TNF/NF-κb-related signaling pathway genes. In vitro testing of IPSE uptake by urothelial cells and TRPV1-expressing neuronal cells showed uptake by both cell types. Thus, IPSE’s nuclear localization sequence-dependent therapeutic effects on TRPV1-mediated bladder pain may act on TRPV1-expressing neurons and/or may rely upon urothelial mechanisms.


2003 ◽  
Vol 49 (5) ◽  
pp. 1297-1307 ◽  
Author(s):  
Lars Fichtner ◽  
Daniel Jablonowski ◽  
Angelika Schierhorn ◽  
Hiroko K. Kitamoto ◽  
Michael J. R. Stark ◽  
...  

2000 ◽  
Vol 353 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Lyndall J. BRIGGS ◽  
Ricky W. JOHNSTONE ◽  
Rachel M. ELLIOT ◽  
Chong-Yun XIAO ◽  
Michelle DAWSON ◽  
...  

Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstrating its ability to target a heterologous protein to the nucleus, and to be phosphorylated specifically by the CcN-motif-phosphorylating protein kinase CK2 (CK2). The IFI 16 NLS, however, has novel properties, conferring ATP-dependent nuclear import completely independent of cytosolic factors, as well as binding to nuclear components. The IFI 16 NLS is not recognized with high affinity by the NLS-binding importin heterodimer, and transport mediated by it is insensitive to non-hydrolysable GTP analogues. The IFI 16 NLS thus mediates nuclear import through a pathway completely distinct from that of conventional NLSs, such as that of T-ag, but intriguingly resembling that of the NLS of the HIV-1 transactivator protein Tat. Since the IFI 16 CK2 site enhances nuclear import through facilitating binding to nuclear components, this represents a novel mechanism by which the site regulates nuclear-protein import, and constitutes a difference between the IFI 16 and Tat NLSs that may be of importance in the immune response.


Author(s):  
Rüdiger Horstkorte ◽  
Bettina Büttner ◽  
Kaya Bork ◽  
Navdeep Sahota ◽  
Sarah Sabir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document